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Motivation |

» Weather forecasts and warnings are the most important
services provided by the meteorological profession.
» Forecasts are used by
» Government and industry to protect life and property.
» To improve the efficiency of operations.
» Individuals to plan a wide range of daily activities.
» Weather forecasting today is a highly developed skill:
» |t is grounded in scientific principles and methods.
» Makes use of advanced technological tools.
» How do we forecast the state of (highly non-linear)
dynamical system?
» An imperfect numerical forecast.
» Observations of the actual state.
» Observation operator.
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Components in DA [BS12] |

» We want to estimate x* € R™1. n~ O (108).

» Imperfect numerical model:

Xnext = Mtcurrem%tnext (Xcurrent) ;

where x € R"™*1.

» Noisy observations:
y=H(x) +ecR™L

where 7 : R” — R™ and € ~ N (0m, R).m ~ O (10°).
» Prior estimate x> € R™?! with errors following A/ (0, B).
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Components in DA [BS12] I
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Components in DA [BS12] Il

> By Bayes' Theorem we know that:
P (xly) o< P (x) - £ (xly)

where

1 b2
P(x) o< exp (—2-Hx—x HBI)
1
L) x w5 Iy —HxlE )

and therefore,

x? = arg max P (x|y) ,
X
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Components in DA [BS12] IV

P It can be easily shown that:
x? = xb+A-HT-R_1-d:A~[B_l-xb+HT.R—1.y
-1
= xb+B-HT-[R+H-B~HT] -d
where A= [B~*+HT -R7!. H]—l € R™" and

d=y—H-xt e R™1,

» Posterior distribution:

x~ N (x?, A) .
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Sequential Data Assimilation Problem

(a) Free run (b) Observations (c) Sequential DA
process

Figure: Sequential Data Assimilation process.

At assimilation steps, we do need to estimate x? and B
(moments of the prior error distribution).
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Ensemble Based Methods

» We can make use of an ensemble of model realizations:
b b[1] b[2 b[N N
X° = [x[],x[],...,x[ Il e R™
» Empirical moments of the ensemble:

1

b <b b nxn

~x* = —.xXP.1yeRr

X X N N € s
1

PP = ——— .6X.6XT,

B
N—-1

Q

and 6X = Xb —xb. 1] e RN,
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The Lorenz 96 Model - Toy Model |

» The Lorenz 96 model:

. (x2 — xp—1) " xn —x1 + F for i =1,

ditJ: (Xi41 — Xi—2) - Xjic1— X+ F  for2<i<n-—1, (1)
(x1 — Xp—2) *Xn—1 —xn+ F  fori=n,

where x; stands for the /-th model component, for 1 < < n.

» Each model component stands for a particle which fluctuates
in the atmosphere.

» Exhibits chaotic behaviour when the external force F is set to
8.
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The Lorenz 96 Model - Toy Model Il
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Estimation of B via N = 10°.
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Figure: Estimation of B via N = 10°.
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The Stochastic Ensemble Kalman Filter [Eve06] |

» Sequential Monte Carlo method for parameter and state
estimation.

» Analysis ensemble (posterior ensemble):
X = X?4+P" HT-[R+H-P" H| D
X? = Xb4+P?.H" .RIDeR™V,
-1

X7 = p?. [HT RTMYS 4+ [Pb} -xb] e R™V,
where P? = [HT R~ H + [P?]™!| € R"*", and the e-th
column of D € R™*N and Y € R™N are:
dlel — y 4+ el — 3 (Xb[e]> € R™1, and ylel — y 1 €l

respectively, for 1 < e < N, and €[l ~ A/ (0,,, R).
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L — 2 Error Norms in Time, N = 10°
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Figure: L — 2 error norms in time, N = 10°.

But too many samples!!! In practice, model realizations are
constrained by the hundreds...
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L — 2 error norms in time, N = 10
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Figure: L — 2 error norms in time, N = 10.

What is going on here?...
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Estimation of B via N = 10
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Figure: Estimation of B via N = 10.

What can we do? Localization methods...
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Localization Methods

» Avoid the impact of spurious correlations.
> If

log (n)
N

is bounded (and small)... the resulting estimator is
well-conditioned.
» Three different flavors:

1. Covariance Matrix Localization. (Precision Localization)
[NRSD15, NRSD17, NR17, NRSD18].

2. Spatial Domain Localization [OHS™04].

3. Observation Localization [AND07, ANDO09].
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Covariance Matrix Localization

» Impose the desired structure on P? via a decorrelation matrix.
P=L®P?, (2)

where, for instance,

L), = exp < ¢("r,2j)2> |

(a)r=1 (b) r=3
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Effects of Covariance Matrix Localization

(a) P°, N =30 (b) Lforr=3 ()P =L-P"

(d) P, N =30 () Lforr=5 (flP=L P
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L — 2 error norms in time.
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Precision Matrix Localization |

» Component-wise products are prohibitive in high-dimensional
spaces.

» When two model components are conditional independent,

their corresponding entry in the precision covariance matrix is
zero.
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Precision Matrix Localization Il
» Modified Cholesky Decomposition:

Bl1=T".D!T

where the non-zero elements from T € R"*" are given by

fitting models of the form:

xlh = Z xlal . {-T}i, + el e RN for1<i<n,

qeP(i,r)

and {D}, ; = var (el).
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Precision Matrix Localization IlI

» An estimate:

(a) P

(e) B (f) B
Results:
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Precision Matrix

Localization IV
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Spatial Domain Localization [Buell] |

» Very simple idea:

» Then...

1. Use local observations.

Use local estimators of covariance matrices.

Hybrid methods work very well.

Evidently, we mitigate the impact of sampling errors...

B wn
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Spatial Domain Localization [Buell] I
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Shrinkage Covariance Matrix Estimation |

> Samples {s;}I,, where s; ~ A (0,, C)

» Structure of matrices:

C=7 T+(1—-7) CseR™",

~ 2
optimal value of v in squared loss sense E [HC — CHJ where

tr(Cs) 1

C € R"™" is the true covariance matrix. T = =

» Properties:

» Have been proven more accurate than the sample covariance
matrix [CM14].

> Better conditioned than the true covariance matrix [CWEH10].

» They are strong under the condition n > N [CWH11].
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Shrinkage Covariance Matrix Estimation |l
> Ledoit and Wolf estimator [LW04, CWEH10]:

S llc - s @7
N2 [m«(cg) - tr2(cs)} ’

n

Yw = min

» Rao-Blackwell Ledoit and Wolf estimator [CWEH10]:

N=2 . tr (C2) + t2? (Cs)

n

(N +2)- [tr(Cg) - “2(7”} ’

n

YRBLW = Min
» It is proven that [CWH11]:

~ 2 ~ 2
o - €ff] <5 <[]
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RBLW in the EnKF context

> Replace P? by a better estimator of B.
» RBLW estimator in the EnKF context:

B = 5[5 lnen] + (1—75) - 6X - 0X' e R™".

where X = —L_ . §X € R™N.

VN-1
» Parameters:
_ (PP
Hg = n
N—2 2
) “n - tr (Pb ) + tI'2 (Pb)
B = min

(N+2)- [tr (sz) B trz(np,,)] )1

» The direct implementation is prohibitive, recall
n~ O (10%).
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Efficient Implementation of the RBLW |

> Recall:
n N—1
tr (Pb) = Za, ZO’,’
i=1 i=1
) n N—1
tr(Pb) = ZU? 20,2
i=1 i=1
> Note

5 T
ﬁ.zﬁ.vﬁ}.[uﬁ.
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Efficient Implementation of the RBLW Il

this implies
o (p9) =52 (5%).
for1<ji<N-1.
» The estimator reads:
B = Vg - [g - Noxn) + (L —1g) -g)\(-g)\(TER"X".

» Efficient computation of the parameters:

N;2 Z,N115:4+ [ZN 1A2
(N+2) |:ZN 1,\4 [2N115i2]
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Efficient Implementation of the RBLW IlI

> & is the i-th singular value of 6X € R™N, for 1 < i< N — 1.
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» EnKF model space, with ¢ = ug -7g and 6 =1 —g:

X* = XP+E-N-Zg+¢ HT-Zg,
WhereE:\/g-g)\(ElR”XN,I'I:H'EEJR’"XN,and
ZQER’"XN:

(rjtn-nT)-zﬁ _ [Y—H(Xbﬂ,
= R+¢ -H-HT e R™™,
» EnKF ensemble space:
X?=X"+U- A e RV,
where U = ﬁ oX € lR”XN and A* € RV*N minimizes
s =5 MU AR5 Y= (x*) —@ A,
withQ:H'UeR’"X’V.
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Synthetic Members

» The size of the ensemble can be increased by synthetic
members:

xfw/\/’(ib,§>,for1§i§K.

> Sampling from the above distribution does not require to
build B, instead:

B= [5)\(,,u§, 'yg}

» Prior distributions:
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Sampling in High Dimensions |
» Taking the samples
b_gb B2 ¢ —xb (0. ax.ax ) e
x; =x"+B E =X+ (@ -lpxn+6-6X-0X &

where &§; ~ N (0p, lnxn), v = pg -7g and 6 =1 — 5.

» Consider the random vectors

Ell ~ N(On, In><n) S RnX1v
€ ~ N(Oy, lyxy) € RV,

and let

Cov(eh €2) = & ae =0,
Cov(ér, &) = & =0pnun.
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Sampling in High Dimensions Il

We make the following substitution:

§1/2.€I.N\/95.5’1+\f5.§)\(.£’2.
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Sampling in High Dimensions Il

» The statistics are not changed:

“~ — T
E[(\/&-E}+\/5.6x-gl?) (\/g.g}Jr\f(;.gx.gI?) ]
T T

¢ Li0& Ve d geg
~— —_—
Cov(&},&})=lnxn Cov(€1,62) =0,y
T
o gog
——
COV(&?»&}):ONXn
5X 2 o g2T 5T ~ T
+0-0X- & ®R&; OX =@ lyn+95-0X-0X
—_——
Cov(&7.67)=Inxn
—B.
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Sampling in High Dimensions IV

» The synthetic members are obtained as follows:

X?:§b+\/¢.£}+\/3.g)\(-§%, i=1,...,K.
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Importance of Synthetic Members
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EnKF-MC and EnKF-SC with the SPEEDY Model |

» We make use of FORTRAN 90 in order to code the EnKF-MC
and the EnKF-RBLW (from now on EnKF-SC).

» 96 ensemble members were used for the experiments.

» The initial perturbation of the background state is 5% the
true state of the system.

» The model is propagated for a period of 24 days, observations
are taken every 2 days.

» The SPEEDY model is used with T-63 resolution (96 x 192)
with 4 variables. 8 layers per variable. n =~ 590, 000.

» Three sparse observational networks were used for the tests.
» We compare the results with the LETKF [OHST04, BT99].
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EnKF-MC and EnKF-SC with the SPEEDY Model Il

(f) p=4%

Figure: Observational networks for different values of p.
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Accuracy of the EnKF-MC |
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Figure: RMSE of the LETKF and EnKF-MC implementations for
different model variables, radii of influence and observational networks.
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Accuracy of the EnKF-MC Il

(c) EnKF-MC (d) LETKF

Figure: 5-th layer of the meridional wind component (v).
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Accuracy of the EnKF-MC IlI

(c) EnKF-MC (d) LETKF

Figure: 2-th layer of the zonal wind component (u).
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Local Estimation of B!

(c)B (d) B
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Accuracy of the EnKF-RBLW |

Zonal Wind Component (U), (m/s)
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Figure: RMSE of the LETKF and EnKF-RBLW implementations for
different model variables, radii of influence and observational networks.
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Accuracy of the EnKF-RBLW I

(c) EnKF-RBLW (d) LETKF

Figure: 5-th layer of the meridional wind component (v).
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Accuracy of the EnKF-RBLW I

(c) EnKF-RBLW (d) LETKF

Figure: 2-th layer of the zonal wind component (u).
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Parallel implementations of ensemble based methods

» Blueridge Super Computer @ VT

» BlueRidge is a 408-node Cray CS-300 cluster.

» Each node is outfitted with two octa-core Intel Sandy Bridge
CPUs and 64 GB of memory.

» Total of 6,528 cores and 27.3 TB of memory systemwide.

> Eighteen nodes have 128 GB of memory.

> In addition, 130 nodes are outfitted with two Intel MIC (Xeon
Phi) coprocessors.

» The methods are coded in FORTRAN using MPI.

» LAPACK [ABD'90] and BLAS [BDD*01] are used in order to
efficiently perform matrix computations.

» We vary the number of processors from 96 (16 computing
nodes) to 2,048 (128 computing nodes)
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Parallel implementations of ensemble based methods |

» The approximations are based on domain decomposition

(a) 12 (b) 80
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Parallel implementations of ensemble based methods Il

» Boundary information
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Parallel implementations of ensemble based methods Il|

» Accuracy (EnKF-MC): number of processors ranges from 96
(16 computing nodes) to 2,048 (128 computing nodes)
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Parallel implementations of ensemble based methods IV

» Accuracy (EnKF-MC): number of processors ranges from 96
(16 computing nodes) to 2,048 (128 computing nodes)

Zonal Wind Component (U), (m/s)
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Parallel implementations of ensemble based methods V

» Accuracy (EnKF-RBLW): number of processors ranges from
96 (16 computing nodes) to 2,048 (128 computing nodes)

onal Wind Component (U), (m/s)
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Parallel implementations of ensemble based methods VI

» Accuracy (EnKF-RBLW): number of processors ranges from
96 (16 computing nodes) to 2,048 (128 computing nodes)

Specific Humidity (g/Kg)
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Parallel implementations of ensemble based methods VII

» Computational time: number of processors ranges from 96
(16 computing nodes) to 2,048 (128 computing nodes)
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