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Research Description

The KF is an optimal method when different assumptions about the statistical

behavior of the uncertainties are met.

But in many real applications there are not enough information to characterize

the system uncertainties or there are too many uncertainties sources.

It is proposed a three-year plan to develop a Ensemble-based data assimilation

scheme to lead with high-uncertainty and high-dimensional systems.



Research Description

The scheme will be focus in three important aspects of the data assimilation

process.

To implement a ensemble robust filter to evaluate its performance in a high-

uncertainty system.

To develop a covariance localization technique that incorporates knowledge

about the system.

To develop an uncertainty propagation model using phenomenological

knowledge of the parameters to be estimated.



Research Description

Schematic representation of parameter estimation using a model to propagate the
emission uncertainty and a Ensemble-based DA scheme. Based in (Peng et al., 2017).



Robust Ensemble-Based DA

• In the EnKF it is necessary to make some statistical assumptions related to the

uncertainty in the model and the observations, that in many of real applications

are no truth. For instance, the Gaussian distribution of the state error.

• A different approach when the systems condition does not satisfy the

requirement of the KF-based methods are the robust filters or robust estimators.

• The robust filters emphasize the robustness of the estimation, so that they may

have better tolerances to possible uncertainties in assimilation. Since its

purpose is not the optimality in the estimation, the robust estimator does not

require an exactly statistical representation of the error, showing a better

performance that the KF-based methods in scenarios with poor statistical

representation of the uncertainty.



Robust Ensemble-Based DA

• Unlike the KF that minimize the variance of the estimation error,

the HF is based on the criterion of minimizing the supremum of the 𝐿2 norm

of the uncertainty sources (initial conditions, parameters, boundary conditions,

etc.) (Han et al., 2009). The HF requires that the total energy of the estimation

errors, be no longer than the uncertainty source energy times a factor 1/γ:
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Where 𝑥𝑡
𝑡 is the truth state, 𝑥𝑡

𝑎 is the analysis state, 𝑆𝑡 is a user-chosen matrix of 

weights, 𝑢𝑡 and 𝑣𝑡 are the model and observation uncertainty, Δ𝑡 , 𝑄𝑡 and 𝑅𝑡 are 

the uncertainty weights matrices with respect to the initial conditions, model error 

and observations error.  

(1)



Robust Ensemble-Based DA

To solve equation (1), it is defined first the following cost function 𝐽𝐻𝐹:

𝐽𝐻𝐹 =
σ𝑡=0
𝐾 𝑥𝑡

𝑡 − 𝑥𝑡
𝑎

𝑆𝑡

2

𝑥0
𝑡 − 𝑥0

Δ0
−1

2
+ σ𝑡=0

𝐾 𝑢𝑡 𝑄𝑡
−1

2
+ σ𝑡=0

𝐾 𝑣𝑡 𝑅𝑡
−1

2

Then the inequality (1) is equivalent to 𝐽𝐻𝐹 ≤
1
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The optimal HF is achieved when γ = γ∗ . In this sense, the evaluation of

γ∗ is an application of the minimax rule, a strategy that aims to provide robust

estimates and is different from its Bayesian counterpart.



Robust Ensemble-Based DA

The γ is then know as performance level of the HF. The inequality (1)  can be solve 

iteratively, similar that in the KF:
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Robust Ensemble-Based DA

where Δ denotes the uncertainty matrix, analogues to the covariance matrix 𝑃 in the

KF, and 𝐺𝑡 is the HF Gain matrix analogues to the Kalman Gain 𝐾𝑡 . To compare

directly the HF and the KF, let rewrite:
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𝑓
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Then, it is clear that Σ𝑡
𝑎 is a uncertainty matrix created updating Δ𝑡

𝑓
trough a KF,

where:
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Robust Ensemble-Based DA

The EnLTHF proposed in (Luo and Hoteit, 2011) is a time-local version of HF which

utilizes only the current state and observations of the system rather than the entire

available history (Nan and Wu, 2017). Unlike the HF where the cost function 𝐽𝐻𝐹 is

defined in all the assimilation windows, in the EnLTHF a local cost function is

proposed:
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Similarly to equation (1), it is required that:
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Robust Ensemble-Based DA

where γ𝑡 is a suitable local performance level, which satisfies:
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Robust Ensemble-Based DA

The EnLTHF can be expressed in terms of the EnKF algorithm using the notation of

(Luo and Hoteit, 2011)
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where the operator 𝐸𝑛𝐾𝐹() means that 𝛴𝑡
𝑎 and 𝐾𝑡 are obtained through the EnKF.



Robust Ensemble-Based DA

𝑑𝑥𝑖
𝑑𝑡

= 𝑥𝑖+1 − 𝑥𝑖−2 𝑥𝑖−1 − 𝑥𝑖 + 𝐹 𝑡 , 𝑖 = 1,… , 40

Numerical experiment with the model Lorenz 96



Robust Ensemble-Based DA



Dynamic-spatial localization

• The idea of distance-dependent localization technique where the localization

radius can vary according with knowledge about the system has been little

studied in atmospheric DA applications.

• In History Matching problems, there are more applications that try to do

something related with theses ideas. Specifically in Soares et al., 2018) two

different localization methods in a reservoir parameter estimation case are

compared. In the first one, are used influences areas of the observations and

delimit the localization windows. The second method is based in streamlines

and selection of the historical time when they presented the biggest area and

trace the influence area

• Localization technique based in streamlines simulation are proposed as an 

alternative to the distance-dependent methods and using  more efficiently the 

model information.



Dynamic-spatial localization

Distance-dependent localization



Dynamic-spatial localization

Streamlines simulation localization
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Uncertainty Model Propagation

• In most application of parameter estimation and uncertainty modelling using

Ensemble-based DA are followed two approaches: to model the uncertainty as a

stochastic process (colored noise) like is described in (Heemink and Segers,

2002) or as a combination of old value like in (Peng et al., 2017).

• The two methods are explain next taking as example the emission estimation in

CTMs applications.



Uncertainty Model Propagation

In (Heemink and Segers, 2002) the deterministic model state is represented in

discrete time as:

δ𝑒𝑡 = αδ𝑒𝑡−1 + 1 − α2 𝑤𝑡

𝑥𝑡 = 𝑀 𝑥𝑡−1

Since the emissions are an important source or error, the uncertainty in the

emission are modeled as a stochastic process, for this case, as a colored noise

(Jazwinski, 1970):

where 𝑤𝑡 is a white noise and δ𝑒𝑡 is the emission correction factor. Thus, he

stochastic model state is formed by augmenting the state vector with the correction

factor δ𝑒𝑡:
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Uncertainty Model Propagation

On the other hand, the method proposed in (Peng et al., 2017) uses a persistence

forecasting operator that serve as the forecast model for the emission correction

factors. This forecast model is built by a smooth operator using the state ensemble

and the previous analysis value of emission correction factors λ𝑡
𝑎 :
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Here, 𝑇 is the time windows of the smooth operator.



Uncertainty Model Propagation

The state vector is augmented with the correction factors λ and can be estimated

through Ensemble-based DA. With this, is created a forecast emission ensemble

and an analysis forecast ensemble following:
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