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What, how much, and whence is being emitted
if we know how much is being deposited in 
different protected natural areas?



Inverse modelling

… Most people, if you describe a train of events to them Will tell you what the result
Will be. There are few people, however that if you told them a result, would be able to
evolve from their own inner consciousness what the steps were that led to that result. 
This power is what I mean when I talk of reasoning backward

Sherlock Holmes
A Study in Scarlet
Sir Arthur Conan Doyle (1887)

Motivation
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Well-posed problems

Inverse problemsDirect problems

Ill-posed problems

Causes Effects
Inverse problems

Direct problems

“Two problems are inverse to each other if the formulation of each involves all or
part of the solution of the other” J. B. Keller (1976)

Inverse modelling

Motivation
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Tarantola A.  et al. (2005). 



First I need a model

My model is not accurate

I have mesurements of the reality
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Data assimilation

Data assimilation

methods

But,
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Variational assimilation is based
on optimal control theory

Asch M. et al. (2016)
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Windowing step

Stop optimization criteria
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Consider some physical system:
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𝑦𝑘 = ℳ𝑘𝑥𝑘 + 𝑣𝑘 𝑣𝑘~𝑁(0, 𝑹)
𝑡
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𝑥𝑘+1 = ℱ𝑘(𝑥𝑘 , 𝑝)

𝑥0

𝑡



Gap between
simulated output 
model and reality

Gap between
observation
and reality

Variational Data assimilation
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background

𝒥 𝑏

𝒥 𝑜

𝒥 = 𝒥 𝑏+ 𝒥 𝑜



𝒥 𝒙0 =
1

2
𝒙0 − 𝒙𝑏

𝑇𝑩−1 𝒙0 − 𝒙𝑏 +
1

2
(𝐻 𝒙0 − 𝒚0)

𝑇𝑹−1(𝐻 𝒙0 − 𝒚0)

Variational Data Assimilation

Background error covariance matrix

A priori (background) state Observation operator

𝒥 = 𝒥 𝑏 +    𝒥 𝑜

Observations

Distance to forecast Distance to observations

=
1

2
ԡ𝒙0 − ԡ𝒙𝑏 𝑩

2
+

1

2
ԡ𝐻(𝒙) − ԡ𝑦

𝑹

2

3D-Var
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Observation error covariance matrix



4D-Var

𝒥(𝑥𝑜) =
1

2
[ 𝒙0 − 𝒙𝑏

𝑇𝑩−1 𝒙0 − 𝒙𝑏 +෍

𝑖=0

𝑠

(𝐻 𝒙𝑖 − 𝒚𝑖)
𝑇𝑹−1(𝐻 𝒙𝑖 − 𝒚𝑖)]

Distance to background Distance to observations

=
1

2
ԡ𝒙0 − ԡ𝒙𝑏 𝑩

2
+
1

2
෍

𝑖=0

𝑠

ԡ𝐻𝑀(𝒙) − ԡ𝒚𝑖
𝑹

2

Variational Data Assimilation
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Variational Data Assimilation
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𝒥 𝒙0 =
1

2
(ℳ𝑥𝑠 − 𝑦𝑠)

𝑇𝑹−1(ℳ𝑥𝑠 − 𝑦𝑠)

𝑦𝑘 = ℳ𝑥𝑠 + 𝑣𝑠𝑥𝑘 = ℱ 𝑥𝑘−1

𝛿𝒥 = −(ℳℱ𝑠𝑥0 − 𝑦0)
𝑇𝑹−1ℳ

𝜕ℱ𝑠

𝜕𝑥
𝛿 𝑥0

𝒥 𝒙0 =
1

2
(ℳℱ𝑠𝑥0 − 𝑦𝑠)

𝑇𝑹−1(ℳℱ𝑠𝑥0 − 𝑦𝑠)

𝑣𝑠~𝑁(0, 𝑹)

𝑥1 = ℱ 𝑥0 𝑥2 = ℱ 𝑥1 = ℱℱ𝑥1 … 𝑥𝑠 = ℱ 𝑥𝑠−1 = ℱ𝑠 𝑥0



Variational Data Assimilation
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𝛿𝒥 𝒙0 =
𝜕ℱ𝑠

𝜕𝑥

𝑇

ℳ𝑇𝑹−1(ℳℱ𝑠𝑥0 − 𝑦0)
𝑇 , 𝛿𝑥0

𝛿𝒥 𝒙0 = ∇𝛿 𝒙0 𝒥, 𝛿𝒙0

∇𝛿 𝒙0 𝒥 =
𝜕ℱ𝑠

𝜕𝑥

𝑇

ℳ𝑇𝑹−1(ℳℱ𝑠𝑥0 − 𝑦0)
𝑇

𝑥, 𝐴𝑦 = 𝐴𝑇𝑥, 𝑡

The adjoint trick

𝛿𝒥 = ℳ𝑇𝑹−1(ℳℱ𝑠𝑥0 − 𝑦0)
𝑇 ,
𝜕ℱ𝑠

𝜕𝑥
𝛿 𝑥0



∇𝛿 𝒙0 𝒥 =
𝜕ℱ𝑠

𝜕𝑝

𝑇

ℳ𝑇𝑹−1(ℳℱ𝑠𝑥0 − 𝑦0)
𝑇

Atmospheric Chemical Transport Model: High-dimensional numerical model ~𝟏𝟎𝟔 − 𝟏𝟎𝟕states

Variational Data Assimilation
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With 𝒅𝑘 =

−∇𝒥 𝒙𝑘
−[Hess(𝒥 𝒙𝑘 )]−1∇𝒥 𝒙𝑘

−∇𝒥 𝒙𝑘 +
ԡ∇ ԡ𝒥 𝒙𝑘

2

ԡ∇ ԡ𝒥 𝒙𝑘−1
2

…

Gradient method

Quasi(Newton method)

Conjugate gradient

…

Variational Data Assimilation
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A backward
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cycle

Observation
or measured
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∇𝒥 𝒙0Gradient

of the distance function

find

Such that
∇𝒥 𝑥𝑛+1(𝒕0) < ∇𝒥 𝑥𝑛(𝒕0)

Repeat until 𝒥 become smaller than treshold value

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝒅𝐶𝑘



4DVar model example: the Lorenz 63 model
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𝑑𝑥

𝑑𝑡
= 𝑓1(𝑥, 𝑦) = 𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑓2(𝑥, 𝑦, 𝑧) = 𝑥 𝜌 − 𝑧 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑓3(𝑥, 𝑦, 𝑧) = 𝑥𝑦 − 𝛽𝑧

Intensity of convection

Maximum temperature difference

Stratification change due to convection

Similitudes with the non linear atmospheric system, simple in structure, rich in solution patterns



23

𝑑𝑥

𝑑𝑡
= 𝑓1(𝑥, 𝑦) = 𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑓2(𝑥, 𝑦, 𝑧) = 𝑥 𝜌 − 𝑧 − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑓3(𝑥, 𝑦, 𝑧) = 𝑥𝑦 − 𝛽𝑧

Prandtl number

Modified Rayleigh number

Aspect ratio

4DVar model example: the Lorenz 63 model



               

    

   

   

 

  

  

  

  

  

 
 
 
 
   

 
 

 

 

 

(2002)  Data Assimilation Research Centre (http://www.met.reading.ac.uk/~darc/)

Original Fortran program by Marek Wlasak

Deterministic, chaotic model in which the future evolution trajectory is uniquely determined by initial
conditions

4DVar model example: the Lorenz 63 model
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4DVar model example: the Lorenz 63 model
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𝒥 =
1

2
[ 𝒙0 − 𝒙𝑏

𝑇𝑩−1 𝒙0 − 𝒙𝑏 +෍

𝑖=0

𝑠

(𝐻 𝒙𝑖 − 𝒚𝑖)
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MODEL OBSERVATIONSANALYSIS

How to conciliate model with reality
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𝒥 =
1

2
[ 𝒙0 − 𝒙𝑏

𝑇𝑩−1 𝒙0 − 𝒙𝑏 +෍

𝑖=0

𝑠

(𝐻 𝒙𝑖 − 𝒚𝑖)
𝑇𝑹−1(𝐻 𝒙𝑖 − 𝒚𝑖)]

MODEL ANALYSIS OBSERVATIONS

How to conciliate model with reality



                      

         

   

   

 

  

  

 

              

     

            

          

        

                      

         

   

 

  

  

 

              

     

            

          

        

                      

         

 

  

  

  

 

              

     

            

          

        

Adjoint approach toy model example: 

the Lorenz 63 model
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Chemical Transport Model (CTM)

𝜕𝐶

𝜕𝑡
= −∇ ∙ 𝒖. 𝑪 +

𝜕

𝜕𝒗
𝐾𝑣

𝜕𝐶

𝜕𝒗
+ 𝐸 + 𝑅 + 𝑄 − 𝐷 −𝑊

Current and 

future work
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4
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CAUSES EFFECTS

Current and future work
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Lu S. et al. (2017). Baier F. et al. (2013). 

IMPACT OF MEASURES
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Modified standard 4D-Var methods and 

future work

Model Order Reduction MOR-4D-Var

Ensemble 4D-Var

Adjoint free perpectives to address the
disadvantage of not having an adjoint for
a model such the LOTOS-EUROS

Fu S. et al. (2016). 
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