
Non-Linearity and Non-Gaussianity in Atmospheric
Dynamics

Jhon Edinson Hinestroza Raḿırez
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Motivation

Air Pollution
⇓

Mathematical models: Data
assimilation, particle filters
(non-linear particle filters).
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Mathematical models
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Sensitivity.

Uncertainty sources.
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Research Problem

To identify, measure, and model significant sources of uncertainty in the
short-term meteorological forecast with the Weather Research and
Forecasting (WRF) numerical model and to develop a methodology based
on non-linear particle filters for reducing it.
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Tools: WRF Model

The WRF model: numerical
weather prediction and
atmospheric simulation
system.

The WRF model is used for
studying the air quality.

Taken from: Climate Information: Responding to User Needs. University

of Maryland. http://www.climateneeds.umd.edu/chesapeake/wrf.html

(Skamarock et al. 2008, Misenis & Zhang 2010, Carvalho et al. 2012, Tuccella

et al. 2012, Hu et al. 2013, Kumar et al. 2016, Dillon et al. 2016).
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WRF: Mathematical Models

∂tU + mx [∂x (Uu) + · · · ] = FU ,

∂tV + my [∂x (Uv ) + · · · ] = FV ,

∂tW +
(
mxmy

my

)
[∂x (Uw) + · · · ] = FW .

Jhon E. Hinestroza R. (Doctoral Seminary 1) Atmospheric Dynamics October 19, 2018 9 / 38



Some Problems

How does accurate solution close to reality?

How does change the solution of the system when we change these
conditions?

How sensitive is the model for the small changes made to it?

What is the maximum change in the conditions such that there is no
change in the solution?
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Sensitivity Analysis (SA)

The uncertainty (variability) associated with a sensitive parameter in
the model.

Jhon E. Hinestroza R. (Doctoral Seminary 1) Atmospheric Dynamics October 19, 2018 11 / 38



Sensitivity Analysis (SA)

The sensitivity analysis tries to response questions in relation to how
the variation in the output can associate with variations in the
different input factors.

The sensitivity analysis is a function between the model inputs and
the model outputs.

(Pianosi et al. 2016, Borgonovo & Plischke 2016).
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Uncertainty Analysis and Quantification

The uncertainty analysis discriminate the quantify of uncertainty in the
output of a model and it is used for uncertainty assessment of numerical
models.

(Uusitalo et al. 2015, Pianosi et al. 2016).
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Uncertainty Analysis and Quantification

The uncertainty quantification is the science of quantitative
characterization and reduction of uncertainties in both computational and
real-world applications. It tries to determine how likely certain outcomes
are if some aspects of the system are not exactly known.
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Uncertainty Analysis and Quantification

Uncertainty, in models of physical systems, is almost always represented as
a probability density function (PDF) through samples, parameters, or
kernels (objective of uncertainty quantification).
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Uncertainty Analysis and Quantification: Steps

1 Define the system of interest, its response, and the desired
performance measures.

2 Write a mathematical formulation of the system-governing equations,
geometry, and parameter values.

3 Formulate a discretized representation and the numerical methods
and algorithms for its solution.

4 Perform the simulations and the analysis.

5 Loop back to step 1.
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Solution Tools

Uncertainty Quantification

⇓

Data Assimilation

1 Data Assimilation.

2 Particle Filters.
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Tool: Data Assimilation

It is an approach/method for combining observations with model
output with the objective of improving the latter.

Data assimilation combines past knowledge of a system in the form of
a numerical model with new information about that system in the
form of observations of that system.

(van Leeuwen et al. 2015, Asch et al. 2016).
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Data Assimilation: Methods

(Asch et al. 2016).
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Particle Filters

The particle filters can be used to estimate the state of a system. To
estimate x , using y .

The aim: To approximate the relevant probability distributions, with
discrete aleatory measures (or continuous) called particles and his
weight associates.

(Quintero 2010).
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Filtering Problem

Observations {Yt} =⇒ Predictions of State {Xt}

State X

Xt

dt
= b(t,Xt) + σ(t,Xt)Wt ; t ≥ 0,

where b : Rn+1 → Rn, σ : Rn+1 → Rn×p, and Wt is p-dimensional white
noise.

Remark: The aim in a filtering problem: To determine the conditional
distribution of X using Y .
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Foundation of the Problem

p(x |y) =
p(y |x) · p(x)

p(y)

Jhon E. Hinestroza R. (Doctoral Seminary 1) Atmospheric Dynamics October 19, 2018 22 / 38



How to Approximate the States of the System?

Particle Filters

⇓

The state equations are linear and its PDF “a posteriori” is Gaussian
→ Kalman filter.

The state equations are non-linear and its PDF “a posteriori” is
Gaussian → Extended Kalman Filter (EKF).

If the state equations are too much non-linear and its PDF “a
posteriori” is no-Gaussian → the EKF is not a good solution.
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How to Approximate the States of the System?

Non-linear Particle Filters

With a non-linear particle filters is seeked an equation for the conditional
PDF of a process unobserved for a trajectory looked → Kushner and Zakai
equation.
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Particle Filters

With a non-linear and no-Gaussian filter the PDF and non-linear functions
are approximated to find the solution.

The Gaussian Sum Filter (GSM).

The Gibbs sampler.

The Numerical Integration Filter (NIF).

Montecarlo integration with importance sampling.

Rejection Sampling Filter (RSF).

(van Leeuwen et al. 2015).
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Non-linear Particle Filters

Non-linear Particle Filters

⇓
Approximate Solutions ⇐ Importance Function
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Ressampling

(Djuric et al. 2003).
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Description of the Particle Filtering

(Djuric et al. 2003).
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Initial Importance Function

Some questions appear:

What initial importance function to use for finding the solution?

How the solution change with the an initial importance function
selected?

How much the solution change with an initial importance function
selected?

Is there sensitivity of the solution to the initial importance function
selected?
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Current Work

Learning about WRF:

Taken from:

http://www2.mmm.ucar.edu/wrf/users/docs/user guide V4/WRFUsersGuide.pdf Consulted:

September-24-2018.
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Current Work

Learning about data assimilation.
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Goals

How does accurate solution close to reality?

How does change the solution of the system when we change these
conditions?

How sensitive is the model for the small changes made to it?

What is the maximum change in the conditions such that there is no
change in the solution?
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Expected Results

To understand the sensitivity of the WRF model in the Aburrá Valley.

To identify and reduce its uncertain sources, such that can obtain 
better results in the monitor of the climate and weather forecast.

The results will must show the implications of the sensitivity of the
model for the air quality modeling in the Aburrá Valley.

This study will must show the importance of the non-linear data
assimilation to forecasting weather modeling.
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Thanks!
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