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Objetive of the presentation )

A diffusion kernel is a term coined by Laferty (2005) and it alludes to a
Mercer kernel (or classifier in the context of Machine Learning), this results
from solving the heat equation (diffusion equation) in the modeled manifold
in the data set that have a known distribution (multinomial, gaussian, g-
gaussian, etc.). In this short presentation the path that has been developed
to obtain a diffusion kernel will be shown with the hypothesis that the data
have a g-gaussian distribution with parameters (1, o).
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Example Support Vector Machine (SVM) )
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Example Support Vector Machine (SVM)
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Figure 1: ldeas about the operation of SVM
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Concepts, notations and equations of interest )

x p(x, 0): Probability distribution for x a random variable in Q y 6 a
vector of parameters in R”.
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Concepts, notations and equations of interest )

x p(x, 0): Probability distribution for x a random variable in Q y 6 a
vector of parameters in R”.

* 1(0): Potential function, it results from writing the distribution p(x, 6)
as p(x, 0) = exp(F(x) - 8 — ¢(0)) called exponential family, where
F(x) = (F1(x), Fa(x) ..., Fa(x)) and 6 = (01,0, ...,6,).
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Concepts, notations and equations of interest )

x p(x, 0): Probability distribution for x a random variable in Q y 6 a
vector of parameters in R”.

* 1(0): Potential function, it results from writing the distribution p(x, 6)
as p(x, 0) = exp(F(x) - 8 — ¢(0)) called exponential family, where
F(x) = (F1(x), Fa(x) ..., Fa(x)) and 6 = (01,0, ...,6,).

* E[f(x)]: Expected value with respect to the distribution p for a
function f(x), is written

ElF(0] = | Fx)pdn
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Concepts, notations and equations of interest )

x p(x, 0): Probability distribution for x a random variable in Q y 6 a
vector of parameters in R”.

* 1(0): Potential function, it results from writing the distribution p(x, 6)
as p(x, 0) = exp(F(x) - 8 — ¢(0)) called exponential family, where
F(x) = (F1(x), Fa(x) ..., Fa(x)) and 6 = (01,0, ...,6,).

* E[f(x)]: Expected value with respect to the distribution p for a
function f(x), is written

ElF(0] = | Fx)pdn

* O0;if(x): Partial derivative of f(x) with respect to the i-th component
of the vector 6, is written

Of (x)

5,'f(X) = 6,
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Concepts, notations and equations of interest )

x p(x, 0): Probability distribution for x a random variable in Q y 6 a
vector of parameters in R”.

* 1(0): Potential function, it results from writing the distribution p(x, 6)
as p(x, 0) = exp(F(x) - 8 — ¢(0)) called exponential family, where
F(x) = (F1(x), Fa(x) ..., Fa(x)) and 6 = (01,0, ...,6,).

* E[f(x)]: Expected value with respect to the distribution p for a
function f(x), is written

ElF(0] = | Fx)pdn

* O0;if(x): Partial derivative of f(x) with respect to the i-th component
of the vector 6, is written
Of (x)
20;

5,'f(X) =

* £ = log p: Score function, logarithm of the probability distribution.



Concepts, notations and equations of interest J

* g,-f: Components of Fisher's metric, defined as

& = [ @00 pd.
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Concepts, notations and equations of interest )

* g,-f: Components of Fisher's metric, defined as
g,-f = /Q(a,-(z) (0;0) pdp .

* at = Agf: Heat equation or diffusion equation where A is the

operator Laplace - Beltrami defined in terms of the metric as

o - =Yg (Sevemalt )

g” are the components of the inverse of the metric g = [gj].
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Concepts, notations and equations of interest )

* g,-f: Components of Fisher's metric, defined as

& = [ @00 pd.

* at = Agf: Heat equation or diffusion equation where A is the

operator Laplace - Beltrami defined in terms of the metric as

o - =Yg (Sevemalt )

g” are the components of the inverse of the metric g = [gj].
* [jj«: Christofell symbols, defined as

n

1
Mje= 5 10igin + Ojgin — Ongi] g"
h=1
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Concepts, notations and equations of interest )

* Ruk Components of the metric tensor, are calculated by means of the

expression

n
Ruk_Z[F [y = ThTh] + 0T h — 0T,

h=1
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Concepts, notations and equations of interest )

* Ruk Components of the metric tensor, are calculated by means of the

expression
n
Ruk_Z[F [y = ThTh] + 0T h — 0T,

h=1

* Geodesic curve: It is obtained by solving the system of homogeneous
second order differential equations

doy < do; do;
dt D i dt dt

ij=

where each 6, are the components of the parameter 6.
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Concepts, notations and equations of interest

* Ruk Components of the metric tensor, are calculated by means of the
expression
n
Rl = [Thlin =TTl + 0T — 0T,
h=1

* Geodesic curve: It is obtained by solving the system of homogeneous
second order differential equations

doy < do; do;
dt D i dt dt

ij=

where each 6, are the components of the parameter 6.
x p: Geodesic distance, parametrizing the geodetic curve as (t), this

distance is .
p:/ \/ & (7, 9)dt
a

where 4 is the derivate of «y with respect to t.
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Way to obtain a diffusion kernel

)

Lafferty and Lebanon propose in their article Diffusion Kernels on Statis-
tical Manifold (Laferty and Lebanon, 2005) the following way of work

Sigmoid .
Classification of Data (SVM) Ef)'ynomlal
Inear
/ Nsian

Data set Mercer Kernels

Classic look
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Way to obtain a diffusion kernel

)

Lafferty and Lebanon propose in their article Diffusion Kernels on Statis-
tical Manifold (Laferty and Lebanon, 2005) the following way of work

Sigmoid
Classification of Data (SVM) Polynomial
Linear
/ Nsian
Data set Mercer Kernels
Classic look
Probability Geodesic distance ’>
. . Geodesic curve
distributions [ Curvature | —— — — — — - Heat Kernel
families Christofell 'symbols ’
Fisher Information Heat Equation
Information metric Manifold

or Difussion
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Heat kernel by Grigor'yan and Noguchi )

© In the case of the Euclidean space R”, the Heat Kernel is given by

_ 1 Ix=yPy_ 1 d?(x,y)
Kilxy) = (4mt)n/2 P < 4t ~ (4mt)n/2 &P 4t

where ||x — y||? is the square of the Euclidean distance (geodesic
distance) between points x and y.
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Heat kernel by Grigor'yan and Noguchi )

© In the case of the Euclidean space R”, the Heat Kernel is given by

_ 1 Ix=yPy_ 1 d?(x,y)
Kilxy) = (4mt)n/2 P < 4t ~ (4mt)n/2 &P 4t

where ||x — y||? is the square of the Euclidean distance (geodesic
distance) between points x and y.

© On the hyperbolic space H", the heat kernel is given by

(=™ 1 1 a8 \™ 5 2 B
, (2m)™ /art (sinhp B_p) exp (_m t— ‘at fn=2m+1
Ki(x, x') = m L sexp(_mine 2
(-1 V2 ( 1 ﬁ) wéds Ifn—2m42
™)™ J(ar)3 \sinhp dp p Jeoshs—coshp

where p = d(x, x’) is the geodesic distance between the two points
in the plane H". If n =2 (m = 0 in the second case) then

V2 sexp( 52)
t > T4
roo(73) | Tameme
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Tsallis entropy )

In the context of non-extensive statistical mechanics, Constantino Tsallis
(in 1988) defines entropy relative to q as

1 1

where > p(x;) = > pi =1, q is a fixed value less than 3 called entropy

1 !
index and hg is the functional hy, = E[p9] (E[] it can be summation or
integral) that allows defining an expected value relative to g. So, if ¢ — 1
the Shannon entropy

S=- ZP(X:') log p (x;)

used in classical statistical mechanics is obtained.

The description makes sense when defining a pair of inverse functions
one of the other, called g-exponential and g-logarithm that generalize the
exponential and the logarithm, recovering these when g tends to 1.
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The g-exponential function J

The g-exponential function is defined as
expg(x) = [1+ (1 — g)x] 7
for —oo < g < 3. The derivative for a fixed g value is

dix equ(x) = [equ(x)]q
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The g-exponential function J

The g-exponential function is defined as

expy(x) = [1+ (1 — q)x] =7

for —oo < g < 3. The derivative for a fixed g value is

dix equ(x) = [equ(x)]q .

s
Figure 2: exp,(x) for g <0
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Graphs for the function g-exponential )

Figure 3: exp,(x) for 0 < g <1
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Graphs for the function g-exponential J

Figure 4: exp,(x) for 1 < g <3
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The g-logarithm function J

The inverse of the g-exponential function, the g-logarithm, is given by
x1=1 -1

1-gqg
provided that x > 0. The graph for some values of q is presented below,
as well as its derivative for ¢ fixed.

Ingx =
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The g-logarithm function

The inverse of the g-exponential function, the g-logarithm, is given by

| x1=1 -1

NgX = ——

q 1— q

provided that x > 0. The graph for some values of q is presented below,

as well as its derivative for g fixed. g=1/3

d 1 qg=0.5

axllogg(x)] = =%
g=0.9
q=1.3
qg=1.5
q=2

Figure 5: Ing(x)/for 0 < g < 3
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g-Gaussian Distribution |

The g-gaussian distribution has density function
1 (x — ) 1 (1—q) (x—p?]™"
9 = — — = 1 —
pq(X’ ) Zq,a equ < (3 — q)0'2 7 (3 — q) 0_2

a0
where 8 = (u, o) are the parameters on which the manifold of information
is defined, Z, , is the normalization constant that depends on q, is written
as Zgo = Aqo.
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g-Gaussian Distribution

The g-gaussian distribution has density function
G W P Yt
B-9q)0*) Zgo B-q o°
where 8 = (u, o) are the parameters on which the manifold of information

is defined, Z, , is the normalization constant that depends on q, is written
as Zgo = Aqo.

1
Pq(x,0) = —— expg
9,0

Figure 6: g-gaussian distribution
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Normalization constant )

The normalization constant is obtained by satisfying the expression

/Oo f(x)dx:lorzwz/oo [1—8:23(’?72“)2 = dx .

— 00 — 00
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Normalization constant

The normalization constant is obtained by satisfying the expression
= = (=g (= p?]
/Oof(X)dX—lOrZ%a—/oo|:1—(3_q)T dx .

By means of a variable change, the constant A, is defined in terms of the
Beta function (or the Gamma function) for some values of ¢

o Aqfq/ B(l q’2) if —oo < g < 1. In this situation the
admissible domain for x is [—\/%, \/% )
Q Aq:\/27r if g=1.

Q A= B<(7‘7) %) if 1 < g < 3. The domain for x are all

real numbers.
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Particular cases J

@ Gaussian distribution (g = 1).

@ Cauchy distribution (¢ = 2).

Q t-Students distribution (g = 1 + %5 with n € N).
@ Uniform distribution (g — oo).

Q@ Wigner semicircle distribution (g = —1).
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The g-gaussian distribution belong an exponential family

According to the definition of the function g-logarithm applied to the
g-gaussian distribution it is possible to write

o (o (55) ).




The g-gaussian distribution belong an exponential family )

According to the definition of the function g-logarithm applied to the
g-gaussian distribution it is possible to write

o (o (E535) ).

B EETRN S ORI SV
3—qo?~~ 3—-qo2 2 |3—-qo? q
T’Fl(x) T Fa(x)

1
Zeo) |’

Yq(p,0)

= 01F1(x) + 02F2(x) — tg(p, o) .
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The g-gaussian distribution belong an exponential family )

According to the definition of the function g-logarithm applied to the
g-gaussian distribution it is possible to write

1—q
1 1 (x —p)?
o= (e (50)) 1)
Zq712 79-1 1 79-1 2 1
Sl e A G S o 1. 1 7
3—qo?~~ 3—-qo2 2 |3—-qo? "N\ Zgo

H/_/Fl(x) N—— Fz(x)
61 02

Pq(p,0)
= 01F1(x) + 02F2(x) — Yq(p, 0) -

Then the g-gaussian distribution is an element in the family g-exponential
with parameters and function g-potential

o Hw ozt
'T3-gqo2’ 2 3—qo?’
92 1 . 3_q
d}CI(evaZ) = _4_012 - |qu {(_dq 92)37‘7} , with dg = TR
q
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Fisher's metrics and its representations )

On the manifold defined by the g-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Q4 for

a probability distribution p as

Qqp = / pidu,
Q
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Fisher's metrics and its representations )

On the manifold defined by the g-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Q4 for

a probability distribution p as

Qqp = / pldu,
Q
it allows to define a probability distribution g-relative
. 1 R
pg = =—p° where pdu=1.
Qp,q Q
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Fisher's metrics and its representations )

On the manifold defined by the g-gaussian distribution, it is possible to
define two metrics. To do this, Amari (2009) defines the functional Q4 for
a probability distribution p as

Qqp = / pldu,
Q
it allows to define a probability distribution g-relative
. 1 R
pg = =—p° where pdu=1.
Qp,q Q

along with the g-expectation

EIF(] = [ F()podn =g [ F)p%an.

For the g-gaussian distribution the relation is fulfilled (Tanaya, 2011)

3—qg_q_ 3—q 14 1-
Qq,p = 5 Z;,pq: 5 A¢17 oI
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Fisher's metrics and its representations )

One of the metrics defined in the manifold is the usual Fisher g,-f induced
by the Score function ¢ = logpg and the other is the g-Fisher's metric
defined by Amari (2009) and what can be written about the distribution

p as

&5 = Es [(0:6) (01tq) ap" ] = o= [ (01q) (9jt4) P i

q.p JQ

where {; = log, pq.
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Fisher's metrics and its representations )

One of the metrics defined in the manifold is the usual Fisher g,-f induced
by the Score function ¢ = logpg and the other is the g-Fisher's metric
defined by Amari (2009) and what can be written about the distribution

p as
- q _
8" = B3 [(014a) (03t0) 9" '] = 51— | (3ita) (3ita) P el
a.p

where (, = log, ps. The two metrics are related by means of equality
(Amari 2009)

(@) 9 F

gl.. = — i .
ij Q,,°"
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Fisher's metrics and its representations )

One of the metrics defined in the manifold is the usual Fisher g,-f induced
by the Score function ¢ = logpg and the other is the g-Fisher's metric
defined by Amari (2009) and what can be written about the distribution
p as

_ q _
gs? = E; [(9iLq) (9itg) ap® ] = = | (8itq) (81tq) p* dps .

a.p JQ
where (, = log, ps. The two metrics are related by means of equality
(Amari 2009)
(@) q
g.. = —g .
ij Q,,°"

It is also shown that Fisher's g-metric is of the form

gU = 0i0j1bq

which induces a Hessian manifold. Deriving the function g-potential in
terms of parameters 67 and 0> we get the matrix g and by a change of
coordinates it is possible to obtain a matrix diagonal g (@),
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g-Fisher's metrics and its matrix representations

Vq(b1,02) = *49(—)12 — log, 7(—dq 92)3—(,7
| Coordinates (61, 0,) [ Coordinates (1, 0)
-1 b1 Q-1 0
@=| = S (@ _ | =
g - 2 Q-1 g* — B .
H wy R 0 Coom
S Y @) _ G-
det (8') = a5 s det (g17)) = Lo
-1 _ [ 3-9q)02—20> (3—q)Q0102 @]t [ o
[g(q)] - { (3- ‘1)69192 (3—q)Q63 } [g* } = 0 %z
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Fisher's metrics and its matrix representations

2 1
Vq(b1,02) = — ok — log, | (—dq 02) 5
F _ Q45 (q)
| i = 4 8i
| Coordinates (61, 62) | Coordinates (i, o)
- 96, L
240 240 707
gF—lgez _Q_Of_:zl 1‘| gf_[qo 3_671
2q02 203 " q(3—q) 02 qo®
_ 1 Q F\ _ 3—
det (8')) = sty o det (g) = g%
[ F]*l | 3-q)gt3 — 2%z (3 q)qb162 [ F]fl [ q0? 0
£ N (3 - q)q6162 (3 — q)qb2 CE | o 3Lo?
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Christoffel symbols and curvature

Deriving the components of the matrix g/ regarding the parameters (i, o),
it is possible to obtain the Christoffel symbols as summarized in continua-

tion
| Derivadas de las componentes de la métrica
gl =0 gl =0 gy =0 0183, =0
23—
Dgh =-2 | gl =0 0284 =0 Dogh, = — 20

Juan Carlos Arango Parra Diffusion Kernels on g-Gaussian Manifold




Christoffel symbols and curvature

)

Deriving the components of the matrix g/ regarding the parameters (i, o),
it is possible to obtain the Christoffel symbols as summarized in continua-

tion
| Derivadas de las componentes de la métrica

gl =0 gl =0 gy =0 0183, =0

23—

Dgh =-2 | gl =0 0284 =0 Dogh, =~
| Christoffel symbols

rfl,l =0 rlFl,z = (3_15,)(7 rf2,1 =97 rle,z =0

r'2E1,1 = 5 rzFl 2 = r'2E2,1 =0 rzez = 5
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Christoffel symbols and curvature J

Deriving the components of the matrix g/ regarding the parameters (i, o),
it is possible to obtain the Christoffel symbols as summarized in continua-

tion
| Derivadas de las componentes de la métrica |
digf; =0 gl =0 digs =0 0183, =0
2 2(3—
Dgh =-2 | gl =0 Dogh = 0 oghy = — 250
| Christoffel symbols |
F — F_— 1 F— 1 F_
M1=0 Ma2=ggs | T21=-% M2 =0
F o _1 F_ F_ F_ _1
(11 =—% M212=0 M1=0 (o0 =—%
| Metric Tensor |
Rop = % ‘ R31, =0 ‘ Riz12 = guRy, = _q_(];“
Curvature and Geometry
‘ k = di:tl(zglé) =—3%.<0 ‘ Negative constant curvature (hyperbolic space) ‘
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Geodesic curves )

Assuming that the coordinates (i, o) can be parametric depending on t
and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the g-gaussian
distribution

d’n 2dpdo

dt2 o dt dt

d?o 1 du\?> 1 [do)\?
—+—— (=] —=(=) =0.
dt?  (3—q)o \ dt o \ dt
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Geodesic curves )

Assuming that the coordinates (i, o) can be parametric depending on t
and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the g-gaussian
distribution

d’n 2dpdo

dt2 o dt dt
Po 1 (du\ 1(do\*_
dt?  (3—q)o \ dt o \ dt

With the substitution w = Z—g it is possible to show that the curve that
solves this system is
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Geodesic curves )

Assuming that the coordinates (i, o) can be parametric depending on t
and with the Christoffel symbols previously found, it is possible to define a
system of homogeneous second order differential equations that describes
the geodesic curves for the hyperbolic manifold generated by the g-gaussian
distribution

d’n 2dpdo

dt2 o dt dt

Po L (dp)'_1(do)'

dt2  (3—q)o \ dt o\dt)
With the substitution w = Z—g it is possible to show that the curve that
solves this system is

3—q
k2

(h—=h?+(3~-q)o* =

where h and k are constants that possibly depend on g. This curve is
an ellipse with center in (h,0), that is, on the axis u. If g = 2 (Cauchy
distribution) the curves are circumferences of radio 1.
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Further works )

* Find the geodesic distance for a g-gaussiana distribution for any
1<qg<3.

* The Box-Muller method is applicable for g-gaussian distribution
(Thistleton, 2007) generating random data with this distribution.

* Program in Python these diffusion kernels for the manifold generated
by the g-gaussian distribution.

* Define appropriate Christoffel symbols for the g-metric that allow me
to find the curvature for the system (i, o) and that is in accordance

with the result k = #(32‘;_3) (Matsuzoe, 2014).

* Study another way to find distances by means of the heat equation
(Keenan, 2013).
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