Using convolutional networks in practice

Raúl Ramos, Universidad Industrial de Santander

Computo Avanzado y a Gran Escala Advanced and Large Scale Computing Research group

outline

1.machine learning

- 2. convolutional networks
 - 3. working tools
- 4. CNN training strategies
- 5. CNN interpretability and customization
 - 6. CNN embeddings and semmatics
 - 7. time series with CNNs

analytic models

$$\frac{1}{2}Mv^2 + \frac{1}{2}mv^2 - Mgh + mgh\sin\theta = 0$$

$$\frac{1}{2}(m+M)v^2 = gh(M - m\sin\theta)$$

$$v = \sqrt{\frac{2gh(M - m\sin\theta)}{m + M}}$$

ML functional workflow

ML as mathematical optimization

$$\underset{\boldsymbol{w}}{arg \min} \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \right\|^{2}$$

$$\underset{\boldsymbol{w}}{arg \min} \left\| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{w} \right\|^{2} + \lambda \left\| \boldsymbol{w} \right\|^{2}$$

$$\begin{aligned} \max_{\alpha} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j K(x_i, x_j) \alpha_i \alpha_j, \\ \text{subject to:} \\ 0 \leq \alpha_i \leq C, \quad \text{ for } i = 1, 2, \dots, n, \\ \sum_{i=1}^n y_i \alpha_i = 0 \end{aligned}$$

$$\arg \min J(\theta) = - \left[\sum_{i=1}^m \sum_{k=1}^K \mathbf{1} \left\{ y^{(i)} = k \right\} \log \frac{\exp(\theta^{(k)\top} x^{(i)})}{\sum_{j=1}^K \exp(\theta^{(j)\top} x^{(i)})} \right]$$

ML as mathematical optimization

arg min
$$J_{\text{sparse}}(W,b) = J(W,b) + \beta \sum_{j=1}^{s_2} \text{KL}(\rho||\hat{\rho}_j),$$

$$\text{KL}(\rho||\hat{\rho}_j) = \rho \log \frac{\rho}{\hat{\rho}_i} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_i}$$

optimization through gradient descent and backpropagation

ML implementation workflow

formulate cost

 $J(W) = \sum (Wx_i - \hat{y}_i)^2$

add regularization terms

 $J(W) = \sum (Wx_i - \hat{y}_i)^2 + ||W^2||$

derive gradient expression

 $\frac{\partial J}{\partial W}$

implement

<code>

optimization algorithm

$$\underset{W}{arg\ min} = J(W)$$

convolutional networks

ml4a.github.io/dev/demos/demo_convolution.html

cs231n.github.io/convolutional-networks/

convolutional networks

convolutional networks

CNN's learn features

neural networks evolution

perceptron 1960's multi layer perceptron 1990's

2005's:

- vanishing gradient
- activation saturation
- GPUs
- training strategies for large dataset (redudant data, gradients):
 - mini-batches
 - stochastic
 - dropouts for regularization
 - gradient momentum
 - weight initialization
- statistical learning approaches

2010: GPUs tehchnologies

deep learning

multi layered structures:

- RBMs, probabilistic → general tasks
- RNN, recurrent → time series
- CNN, convolutional → image recognition
- etc

state of the art CNNs

image net LSVRC contests (object localization, detection, etc.) 15M images, 1K categories

2015 winner ResNet 152 layers, 1M params

- Uses Residual Units (forces a particular mapping)
- ResNet 1K, 10M params

2017 winner Attention ResNet, 8M params

clarifai.ai

state of the art CNNs

"AlexNet"

"GoogLeNet"

[Szegedy et al. CVPR 2015]

"VGG Net"

[Simonyan & Zisserman, ICLR 2015]

"ResNet"

[He et al. CVPR 2016]

An Explosion of Datasets

1627
Hosted Datasets

276
Commercial
Competitions

1919 Student Competitions 1MM
Data Scientists

4 ML Models Submitted

how CNNs are built and trained

add regularization terms

derive gradient expression

optimization algorithm

how CNNs are built and trained

Theano

```
>>> X = theano.matrix()

>>> cost = (T.dot(X,w))^2 - y + lambda * w^2

>>> gradient = T.grad(cost)

>>> fgrad = theano.function ([X,y,w], gradient)

>>> optimize (fgrad)
```

produces native code according to conf

```
MUST KNOW WHAT MEMORY

OUR DATA USES

[global]

device = cpu
floatX = float32

floatX = float32

//.theanorc

~/.theanorc

c//.theanorc

float32
```

Tensor-flow high level API

```
# Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
# Flatten the data to a 1-D vector for the fully connected layer
fc1 = tf.contrib.layers.flatten(conv2)
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.layers.dense(fc1, 1024)
# Apply Dropout (if is_training is False, dropout is not applied)
fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
# Output layer, class prediction
out = tf.layers.dense(fc1, n_classes)
```

Tensor-board

optimization evolution

computation graph visualization

https://www.tensorflow.org/versions/r0.12/how_tos/graph_viz/

research on CNNs for the mortals

training with small datasets

feature learning

interpretability

customization

semantic embeddings

time series analysis

finetuning:

- take CNN trained with large dataset
- reconfigure last layers for your class set
- adapt your data (resolution, include transforms, etc.)
- train with your data

issues with finetuning:

- your dataset might be too different from pretrain
- features learnt on pretrained models

Dataset	number of images / classes	images per class	avg image size	Literature
Brazil	2876 / 2	1400	64x64	87.03% [17]
Flowers	8187 / 102	40-258	750x500	82.50% [16]
Land Use	2100 / 21	100	256x256	93.42% [21]
OASIS	9600/2	4800	176x176	80.26% [10]
Food	10287* /101	100	512x512	56.40%[3]*

CNN architecture

Layer	Input	Filter Stride Pad	Output	Connections × neurons	Total con- nections
conv1 rn	227x227x3	11x11/4/0	55x55	363x96	34,848
pool1	55x55x96	3x3/2/0	27x27		
$\operatorname{conv2} rn$	27x27x96	5x5/1/2	27x27	2400x256	614,400
pool2	27x27x256	3x3/2/0	13x13		
conv3 r	13x13x256	3x3/1/1	13x13	2304x384	884,736
conv4 r	13x13x384	3x3/1/1	13x13	3456x384	1,327,104
conv5 r	13x13x384	3x3/1/1	13x13	3456x256	884,736
pool5	13x13x256	3x3/2/0	6x6		
FC1 rd	6x6x256		4096	9216	37,748,736
FC2 r	1x1x4096		4096	4096	16,777,216
FC3	1x1x4096		4096	102	417,792
TOTALS					58,689,568

Table 2

greedy layerwise training

results

	Brazil	Flowers	Land Use	OASIS	Food
AlexNe	t. Simple	Architectu	re		
L1	84.6%	49.6%	68.0%	65.3%	10.3%
L2	89.5%	65.9%	84.1%	67.9%	16.0%
L3	90.8%	75.1%	87.5%	69.8%	21.2%
L4	91.7%	79.7 %	84.6%	68.3%	22.8%
L5	91.3%	79.5%	81.6%	68.8%	20.6%
Full L3		61.3%	79.6%		15.2%
Full L5	81.8%	3.51%	4.5%	68.5%	<u>1.3%</u>
	+12.0%	+30.4%	+9.9%	+10.27%	+49.8%
AlexNe	t Architect	ure			
L1	79.5%	57.9%	74.1%	64.5%	12.3%
L2	89.7%	72.1%	84.7%	68.5%	16.5%
L3	90.6%	76.5%	87.9%	69.1%	19.4%
L4	91.3%	77.9%	88.3%	69.6%	20.8%
L5	91.9%	80.5%	87.9%	68.9%	23.3%
Full L5	91.2%	70.6%	55.8%	67.5%	12.1%
	+0.8%	+14.0%	+57.7%	+3.1%	+92.4%

first layer features

feature learning:

- explore different CNN architectures
- use CNN activations as features in a traditional ML setup
- compare performance with ENGINEERED features

DeCAF: pretrained with Imagenet

HCFeats: 17 shape, texture and statistical features

HOG: histogram of oriented gradients

HGD: histogram of gradient divergence

interpretability

no black box in many domains. CNN for alzheimers' detection

	Matrix (std-dev)			CAFFE (std-dev)			Torch (std-dev)					
	acc	auc	tpr	fpr	acc	auc	tpr	fpr	acc	auc	tpr	fpr
Full	0.725	0.875	0.800	0.400	0.825	0.875	<u>0.950</u>	0.300	0.825	<u>0.900</u>	<u>0.950</u>	0.300
	(0.093)	(0.040)	(0.112)	(0.335)	(0.061)	(0.119)	(0.112)	(0.112)	(0.061)	(0.085)	(0.112)	(0.112)
LSC	0.750	0.838	0.800	0.250	0.725	0.887	0.600	0.150	0.875	0.881	<u>0.900</u>	0.150
	(0.125)	(0.106)	(0.112)	(0.306)	(0.056)	(0.073)	(0.285)	(0.224)	(0.088)	(0.072)	(0.137)	(0.224)
LA	0.800	0.856	0.900	0.300	<u>0.850</u>	<u>0.950</u>	0.900	0.300	<u>0.850</u>	0.831	<u>0.950</u>	0.250
	(0.143)	(0.134)	(0.137)	(0.209)	(0.137)	(0.047)	(0.223)	(0.209)	(0.104)	(0.160)	(0.112)	(0.250)
LT	0.725	0.663	0.850	0.400	0.775	0.806	<u>0.950</u>	0.400	0.800	0.831	0.900	0.300
	(0.104)	(0.116)	(0.137)	(0.224)	(0.105)	(0.137)	(0.112)	(0.224)	(0.112)	(0.067)	(0.137)	(0.274)

inspect filter activation difference

Figure 2. Activations of the 60 first layer filters of the selected CNN for a sagital image cut of a CDR 0 patient (left) and the same cut of a CDR1 patient (right). Colored squares show the dBMS of each filter (thus, a global measure, not for this particular image cut). Dark red represents higher dBMS (higher discrimination between both classes), while light pink represents low dBMS.

build a brain model

Figure 3. Sagital cuts 60 to 68 for brain models of filter A for CDR 0 (top), CDR 1 (middle) and the differential model (bottom). Only even cuts are included to show a larger range of the brain.

a differential model for selected filter per class. need to align brains

rank brain substructures

Table 7. Brain substructures ranked according to dBMS (differential brain model summary) when using Filter A of the selected CNN. Substructures with higher dBMS contribute most to differentiate both classes. * shows the substructured identified in the literature where Alzheimer's is mostly located.

	Brain substructure	dBMS		Brain substructure	dBMS
1	Frontal pole *	130.4	9	Left thalamus	123.9
2	Superior frontal gyrus	126.8	10	Right thalamus	123.9
3	Occipital pole	126.2	11	Left hippocampus *	123.7
4	Temporal pole	125.6	12	Right hippocampus *	123.7
5	Superior paletal lobule	125.4	13	Left caudate	123.6
6	Brain stem	125.3	14	Right caudate	123.6
7	Left lateral ventricle	124.2	15	Left amygdala *	123.5
8	Right lateral ventricle	124.1	16	Right amygdala *	123.5

filter identifies typical disease location

customization

pierre auger cosmic ray observatory

elves detection

transient luminous events

elves detection

transient luminous events – CAN SIMULATE THEM!!!! – IMAGE TIME SERIES

Courtesy of David Grisham and Cody Doyle, CSM, Colorado, USA

Eyes 1, 3, and 4 see the most data!

elves detection transient luminous events

goal: reconstruct lightning properties (location, intensity)

semantic embeddings

- use pretrained GoogleNet + VGG
- 2. extract activations for 50K images + 1000 classes (Imagenet)
- 3. compute averaged activation for each class
- 4. spectral clustering of classes (2,3,4...,19 clusters)
- 5. map cluster to wordnet hypernym/hyponym lexical taxonomy
- 6. obtain taxonomy INDUCED by the CNN
- 7. measure layers representativeness

semantic embeddings

induced concept hierarchy

2			Living thing	Artifact				
3			Living thing	Artifact	Conveyance			
4		Mammal	Living thing	Artifact	Conveyance			
5		Mammal	Living thing	Artifact	Conveyance	Artifact (clothing)		
6	Bird	Mammal	Matter (reptile)	Artifact	Conveyance	Artifact (clothing)		
7	Bird	Mammal	Matter (reptile)	Instrumentality	Wheeled vehicle	Clothing	Craft	
8	Bird	Mammal	Matter (reptile)	Instrumentality	Wheeled vehicle	Clothing	Craft	Structure

semantic embeddings

last layers (5ab) offer greater distinguishability

1d signal analysis with CNNs

1. convert 1D signal to 2D image

- 2. use pretrained CNN for classification
- 3. use standard LSTM for classification

1D signal analysis with CNNs

Datasets

Startlight: brightness of a celestial object as a function of time

Face: facial outlines

Earthquake: event about to occur based on recent readings

50words: Handwritten words outline

1D signal analysis with CNNs

RNNs are endowed with store/forget gates CNNs detect patterns on Euclidean localities

explore 1D to 2D transformations understand better what tasks are better suited for each

Name	Smoothed	Value	Step	Time	Relative
star_cnn	0.9805	0.9808	2.016k	Fri Oct 20, 14:04:11	3m 31s
star_lstm	0.8563	0.8562	2.016k	Fri Oct 20, 14:07:03	48s
star_vgg	0.9745	0.9745	630.0	Fri Oct 20, 13:53:11	6m 53s

research projects

deep learning

image processing (biomedical, climate, object detection) time series (finance, KPIs, text mining)

gnss

ionospheric modelling precision positioning intelligent transport systems

projects with industry

www.frontierx.co

transportation

supply chain optimization

aeronautics

efficiency of descent operations

finance

brokers - markets - operations

textile

quality control on production

tourism

online reputation

	Calle de Alocha, 36, 28012 Ma avg sentiment score 0,99, avg					
alysis score on the review m 0.0 (negative) to 1.0	rating	sentiment score	reviews (scroll)			
	5	0.99	rice.room.friend free tea time wi			
+ 1	5	0.99	Brilliant,tiddy,ro comfortable an			
0 <i>?</i>	5	80.0	hotel, bars, friend tapes bers			

mobility

geolocalized social networks

Computo Avanzado y a Gran Escala Advanced and Large Scale Computing Research group

