
Using convolutional networks in practice

Raúl Ramos,
Universidad Industrial de Santander

outline
1.machine learning

2. convolutional networks

3. working tools

4. CNN training strategies

6. CNN embeddings and semmatics

5. CNN interpretability and customization

7. time series with CNNs

analytic models

ML functional workflow

process
extract

features

train
learning

algorithm

predict
annotation

[102 12 30 …]
[0 64 90 203 …]
[9 34 98 99 …]

process
extract

features

[21 112 30 …]
[1 6 190 203 …]
[19 4 8 199 …]

annotated data

non-annotated data

features vector
representation of images

model

FEATURE ENGINEERING

ML as mathematical optimization

arg min

optimization through gradient descent and backpropagation

ML as mathematical optimization

ML implementation workflow
formulate cost

add regularization terms

derive gradient expression

implement

optimization algorithm

convolutional networks

ml4a.github.io/dev/demos/demo_convolution.html

cs231n.github.io/convolutional-networks/

convolutional networks

convolutional networks

CNN’s learn features

train
learning

algorithm

predict
annotation

annotated data

non-annotated data

model

F E A T U R E L E A R N I N G
w i t h i n t h e a l g o r i t h m

neural networks evolution
perceptron 1960’s
multi layer perceptron 1990’s

2005’s:

 - vanishing gradient

 - activation saturation

 - GPUs

 - training strategies for large dataset (redudant data, gradients):
 - mini-batches
 - stochastic
 - dropouts for regularization
 - gradient momentum
 - weight initialization

 - statistical learning approaches

2010: GPUs tehchnologies

deep learning

multi layered structures:

-  RBMs, probabilistic à general tasks
-  RNN, recurrent à time series
-  CNN, convolutional à image recognition
-  etc

state of the art

image net LSVRC contests (object
localization, detection, etc.)
15M images, 1K categories

state of the art CNNs
image net LSVRC contests (object localization, detection, etc.)
15M images, 1K categories

2015 winner ResNet 152 layers, 1M params

•  Uses Residual Units (forces a particular mapping)
•  ResNet 1K, 10M params

2017 winner Attention ResNet, 8M params

clarifai.ai

state of the art CNNs

formulate cost

add regularization terms

derive gradient expression

implement

optimization algorithm

how CNNs are built and trained

how CNNs are built and trained

formulate cost

add regularization terms

derive gradient expression

implement

optimization algorithm

Theano

produces native code according to conf

~/.theanorc

[global]

device = cpu

floatX = float32

~/.theanorc

[global]

device = cuda

floatX = float32

>>> X = theano.matrix()

>>> cost = (T.dot(X,w))^2 – y + lambda * w^2

>>> gradient = T.grad(cost)

>>> fgrad = theano.function ([X,y,w], gradient)

>>> optimize (fgrad)

MUST KNOW WHAT MEMORY

OUR DATA USES

th
is

is
sy

m
bo

lic
!!!

!!

Tensor-flow high level API
Convolution Layer with 32 filters and a kernel size of 5

conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)

Max Pooling (down-sampling) with strides of 2 and kernel size of 2

conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

Convolution Layer with 64 filters and a kernel size of 3

conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)

Max Pooling (down-sampling) with strides of 2 and kernel size of 2

conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

Flatten the data to a 1-D vector for the fully connected layer

fc1 = tf.contrib.layers.flatten(conv2)

Fully connected layer (in tf contrib folder for now)

fc1 = tf.layers.dense(fc1, 1024)

Apply Dropout (if is_training is False, dropout is not applied)

fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

Output layer, class prediction

out = tf.layers.dense(fc1, n_classes)

Tensor-board

https://www.tensorflow.org/versions/r0.12/how_tos/graph_viz/

computation graph °visualization

optimization evolution

research on CNNs for the mortals
training with small datasets

feature learning

interpretability

customization

semantic embeddings

time series analysis

training with small datasets
finetuning:

•  take CNN trained with large dataset

•  reconfigure last layers for your class set

•  adapt your data (resolution, include transforms, etc.)

•  train with your data

training with small datasets
issues with finetuning:

•  your dataset might be too different from pretrain

•  features learnt on pretrained models

training with small datasets
CNN architecture greedy layerwise training

training with small datasets
results first layer features

training with small datasets

feature learning:
•  explore different CNN architectures
•  use CNN activations as features in a traditional ML setup
•  compare performance with ENGINEERED features

training with small datasets

first layer filters

DeCAF: pretrained with Imagenet
HCFeats: 17 shape, texture and statistical features
HOG: histogram of oriented gradients
HGD: histogram of gradient divergence

interpretability
no black box in many domains. CNN for alzheimers’ detection

inspect filter activation difference

build a brain model

a differential model for selected filter per class. need to align brains

rank brain substructures

filter identifies typical disease location

p i e r r e a u g e r
c o s m i c r a y
o b s e r v a t o r y

customization

elves detection
transient luminous events

elves detection
transient luminous events — CAN SIMULATE THEM!!!! — IMAGE TIME SERIES

elves detection transient luminous events
goal: reconstruct lightning properties (location, intensity)

initial tests ½ degree accuracy in predicting
location (target is 1/10)

want to include geometry in the CNN
loss functions for penalizing camera borders

semantic embeddings
1.   use pretrained GoogleNet + VGG
2.   extract activations for 50K images + 1000 classes (Imagenet)
3.   compute averaged activation for each class
4.   spectral clustering of classes (2,3,4…,19 clusters)
5.   map cluster to wordnet hypernym/hyponym lexical taxonomy
6.   obtain taxonomy INDUCED by the CNN
7.   measure layers representativeness

semantic embeddings
induced concept hierarchy

semantic embeddings
last layers (5ab) offer greater distinguishability

1d signal analysis with CNNs
1.   convert 1D signal to 2D image

2.   use pretrained CNN for classification
3.   use standard LSTM for classification

1D signal analysis with CNNs
Datasets
Startlight: brightness of a celestial object as a function of time
Face: facial outlines
Earthquake: event about to occur based on recent readings
50words: Handwritten words outline

1D signal analysis with CNNs
RNNs are endowed with store/forget gates
CNNs detect patterns on Euclidean localities

explore 1D to 2D transformations
understand better what tasks are better suited for each

g n s s

ionospheric modelling
precision positioning
intelligent transport systems

d e e p l e a r n i n g

image processing (biomedical, climate, object detection)
time series (finance, KPIs, text mining)

research projects

projects wi th industry
w w w . f r o n t i e r x . c o

(47)

thnx

