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Outline

The outline of the talk is the following:

Introductory Question.

Part I: A theorem of Convergence for i.i.d. Samples.

Part II: What happens for non i.i.d. designs? (with an illustration)

Part III: Convergence in Distribution of LSR.

All random variables are defined on (Ω,A,P).
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The Problem of Regression

The Question

Given a random vector (X ,Y ) ∈ Rd ×R, how to approximate a “regressor”
f ∗ of Y given X?

f ∗ ∈ arg min
{f :f ◦X∈L2P}

E [|f ◦ X − Y |2] (1)

(so that f ∗ ◦ X = E [Y |X ] if Y ∈ L2
P).
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I.i.d. Case

Part I
A Theorem of Convergence for i.i.d. Samples
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I.i.d. Case

Hypotheses

F a family of (measurable) functions Rd → R.

(New Goal) To find, if possible

f ∗(F) ∈ arg min
f ∈F

E [|f ◦ X − Y |2]

else (f ∗,k)k with E [|f ∗,k ◦ X − Y |2]→k inff ∈F E [|f ◦ X − Y |2].

(I.i.d Design) Dn := ((Xk ,Yk))nk=1 an i.i.d. vector.
(Xk ,Yk) ∼ (X ,Y ).

(LSR Strategy) Given data Dn(ω) = ((Xk(ω),Yk(ω)))nk=1

f̂ ∗(F ,Dn(ω)) ∈ arg min
f ∈F

1
n

n∑
k=1

|f (Xk(ω))− Yk(ω)|2. (2)
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I.i.d. Case

Heuristics

1 By the Law of Large Numbers

1
n

n∑
k=1

|f (Xk(ω))− Yk(ω)|2 ≈ E [|f ◦ X − Y |2] (3)

for P−a.e. ω and “large” n ≥ N(f , ω).

2 Therefore, if N(f , ω) = N is “uniform”

min
f ∈F

1
n

n∑
k=1

|f (Xk(ω))− Yk(ω)|2 ≈ inf
f ∈F

E |f ◦ X − Y |2. (4)
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I.i.d. Case

But are the “arg inf’s” close also?: the problem of generalization.
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I.i.d. Case

Remarks

1. Within F , one cannot do better than

inf
f ∈F

E |f ◦ X − Y |2 − min
{f :f ◦X∈L2P}

E |f ◦ X − Y |2 =

inf
f ∈F

(E |f ◦ X − Y |2 − E |E [Y |X ]− Y |2) = inf
f ∈F

(E |f ◦ X − E [Y |X ]|2)

(5)
(approximation error).
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I.i.d. Case

2. The “uniformity” of N means (either)

The uniform law of large numbers (consistency)

lim
n→∞

sup
f∈F

1
n

n∑
k=1

(|f ◦ Xk − Yk |2 − E |f ◦ Xk − Yk |2) = 0, P− a.s. (6)

Uniform concentration inequalities (speed of convergence)

P[sup
f∈F
|1
n

n∑
k=1

(|f ◦ Xk − Yk |2 − E [|f ◦ Xk − Yk |2])| > δ] ≤ ε(n, δ). (7)

ε(n, δ)→ 0 as n→∞ for all δ > 0.

This leads to assumptions on the distribution of Dn and on F .
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I.i.d. Case

A Classical Result for i.i.d. Samples

Theorem ([GKKM03], Theorem 11.5)

B ≥ 1, ||Y ||P,∞ ≤ B .
Dn = ((Xk ,Yk))nk=1 is i.i.d. (Xk ,Yk) ∼ (X ,Y ) with distribution µ∞.
λ > 1.

then
E

∫
|(f̂ ∗I[f̂ ∗≤B](x))− y |2dµ∞(x , y) ≤

C (λ)B4VF
(1 + log n)

n
+ λ inf

f ∈F
E |f ◦ X − Y |2. (8)

VF = VC- dimension associated to F .
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I.i.d. Case

Remark

The estimate (8) is a consistency estimate with speed of convergence:

1 (Consistency of the generalization) It implies that if (X ′,Y ′) is an
independent copy of (X ,Y ) (independent from Dn)

lim
n

E |f̂ ∗ ◦ X ′ − Y ′|2 = inf
f ∈F

E |f ◦ X − Y |2,

(fix λ > 1, let n→∞, then let λ→ 1, then let B →∞).

2 (Speed of Convergence) If the elements of F are bounded by B , it
gives a function N(ε) such that

0 ≤ E |f̂ ∗ ◦ X ′ − Y ′|2 − inf
f ∈F

E |f ◦ X − Y |2 < ε

if n ≥ N(ε).

(Fix ε > 0 and λ = λ(ε) > 1 such that

(λ(ε)− 1) inf
f ∈F

E |f ◦ X − Y |2 < ε/2).
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The non I.i.d Case: convergence of Averages

Part II
What happens if (Xk ,Yk)k is not an i.i.d. sequence?
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The non I.i.d Case: convergence of Averages

Motivation: an MCMC Example

( [FGM17]): Given X̃ ,Y (accessible) random variables and a “rare” event
Ã for X̃

0 < P[X̃ ∈ Ã] << 1,

consider X ∼ X̃ |[X̃ ∈ Ã]:

P[X ∈ A] =
P[X̃ ∈ A ∩ Ã]

P[X̃ ∈ Ã]
.

Problem: how do we efficiently approximate

E [f (X ,E [Y |X ])]

supposing the knowledge of the conditional probability measures

Q(A, x) = P(Y ∈ A|X = x) = P(Y ∈ A|X̃ = x)?
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P[X̃ ∈ Ã]
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The non I.i.d Case: convergence of Averages

Strategy (sketch):

Do a sample Dn(ω) := (Xk(ω))nk=1 from a Markov Chain (Xk)k with

Xk ⇒k X

(for any initial distribution or a convenient one).

Use Q(·, x) to sample a corresponding (Xk(ω),Yk(ω))k .

(Regression Step) Use the approximation (why?)

E [Y |X = ·] ≈ ĥω(·) := arg min
h∈H

1
n

n∑
k=1

|Xk(ω)− Yk(ω)|2. (9)

Use the approximation (why?)

Ef (X ,E [Y |X ]) ≈ 1
n

n∑
k=1

f (Xk(ω), ĥω(Xk(ω))). (10)
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f (Xk(ω), ĥω(Xk(ω))). (10)

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 14 / 33



The non I.i.d Case: convergence of Averages

Strategy (sketch):

Do a sample Dn(ω) := (Xk(ω))nk=1 from a Markov Chain (Xk)k with

Xk ⇒k X

(for any initial distribution or a convenient one).

Use Q(·, x) to sample a corresponding (Xk(ω),Yk(ω))k .

(Regression Step) Use the approximation (why?)

E [Y |X = ·] ≈ ĥω(·) := arg min
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The non I.i.d Case: convergence of Averages

Does this work? What is the speed of convergence (if any) of this
procedure?

Answers:

See [FGM17] for some answers under convenient hypotheses.

For the regression step:

(Contribution) Generalize [GKKM03], Theorem 11.5 using
β−mixing coefficients associated to (Xk ,Yk)k .

Definition (β−mixing Coefficients.)

For sub sigma-algebras A1 and A2 of A,

BETA(A1,A2) = E [ sup
A2∈A2

|P(A2)− P[A2|A1]|]. (11)
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The non I.i.d Case: convergence of Averages

A General Theorem for LSR with Bounded Response.

Setting:

B ≥ 1.

(Xk ,Yk)k a sequence of random vectors (maybe not i.i.d).

supk ||Yk ||P,∞ ≤ B .

ρk the distribution of (Xk ,Yk). µn := (ρ1 + · · ·+ ρn)/n.

I1, . . . , IL a fixed (arbitrary) partition of {1, . . . , n}, |Ik | ≤ |Ik+1|.

β(k , j) := BETA(σ((Xj ′ ,Yj ′)j ′∈Ik∩{1:j−1}), σ(Xj ,Yj)): the β−mixing
coefficient between time j and its past within Ik .

F a family of functions with associated VC dimension VF .
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The non I.i.d Case: convergence of Averages

Theorem (A Rate of Convergence for LSR with bounded Response)

In the setting of the previous slide, let

f̂ ∗ = f̂ ∗(F ,Dn) = arg min
f ∈F

1
n

n∑
k=1

|f ◦ Xk − Yk |2,

then

E

∫
|f̂ ∗I[f̂ ∗≤B](x)− y |2dµn(x , y) ≤ C (λ)B4VF

(1 + log L + log |I1|)
|I1|

+

8B2(λ+ 1)
L∑

k=1

∑
j∈Ik

β(k , j) + λ inf
f ∈F

∫
|f (x)− y |2dµn.

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 17 / 33



The non I.i.d Case: convergence of Averages

Theorem (A Rate of Convergence for LSR with bounded Response)

In the setting of the previous slide, let

f̂ ∗ = f̂ ∗(F ,Dn) = arg min
f ∈F

1
n

n∑
k=1

|f ◦ Xk − Yk |2,

then

E

∫
|f̂ ∗I[f̂ ∗≤B](x)− y |2dµn(x , y) ≤ C (λ)B4VF

(1 + log L + log |I1|)
|I1|

+

8B2(λ+ 1)
L∑

k=1

∑
j∈Ik

β(k , j) + λ inf
f ∈F

∫
|f (x)− y |2dµn.

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 17 / 33



The non I.i.d Case: convergence of Averages

Example: independent, non i.d. case (L = 1)

Here β(k, j) = 0 for every k, j . We get, as before, the convergence (up to a
exchange of limits)

E

∫
|f̂ ∗(x)− y |2dµn(x , y)− inf

f ∈F

∫
|f (x)− y |2dµn(x , y)→n→∞ 0,

with speed (sup(f ,x)∈F×Rd |f (x)| ≤ B)

C (λ)VFB
4 (1 + log n)

n
.

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 18 / 33



The non I.i.d Case: convergence of Averages

Example: independent, non i.d. case (L = 1)

Here β(k, j) = 0 for every k, j .

We get, as before, the convergence (up to a
exchange of limits)

E

∫
|f̂ ∗(x)− y |2dµn(x , y)− inf

f ∈F

∫
|f (x)− y |2dµn(x , y)→n→∞ 0,

with speed (sup(f ,x)∈F×Rd |f (x)| ≤ B)

C (λ)VFB
4 (1 + log n)

n
.

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 18 / 33



The non I.i.d Case: convergence of Averages

Example: independent, non i.d. case (L = 1)

Here β(k, j) = 0 for every k, j . We get, as before, the convergence (up to a
exchange of limits)

E

∫
|f̂ ∗(x)− y |2dµn(x , y)− inf

f ∈F

∫
|f (x)− y |2dµn(x , y)→n→∞ 0,

with speed (sup(f ,x)∈F×Rd |f (x)| ≤ B)

C (λ)VFB
4 (1 + log n)

n
.

D.Barrera (CMAP) LSR for Non-sationary Designs Eafit Seminar Math. Eng. 18 / 33



The non I.i.d Case: convergence of Averages

Illustration

U ∼ unif [−1, 1], X = arctanU, N ∼ N(0, σ2) (truncated) independent of
U,N

Y (−1) := X 2 sinX + N, Y (1) := −X 2 + N

Dn = Dn−1 ∪ Dn1 , n−1 + n1 = n,

Dnk = nk independent copies of (X ,Y (k)).
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The non I.i.d Case: convergence of Averages

Unclassified Data Classified Data

Dn = Dn−1 ∪ Dn1 Dn1 , Dn2

(The blue empirical approximation is at least “as good” as the other ones).
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The non I.i.d Case: convergence of Averages

Note:

Here n1 = n−1, and f̂B is an estimator of

E [Y |X ] =
1
2

(E [Y (−1)|X ] + E [Y (1)|X ]).

where

Y := Y (−1)I[R=−1] + Y (1)I[R=1].

R =Rademacher (independent from data).

Indeed:
inf
f ∈F

1
n

∑
(Xk ,Yk )∈Dn−1∪Dn1

E |f ◦ Xk − Yk |2 =

inf
f ∈F

1
2

(E |f ◦ X − Y (−1)|2 + E |f ◦ X − Y (1)|2) = inf
f ∈F

E |f ◦ X − Y |2.
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The non I.i.d Case: convergence of Averages

Exponentially Mixing Sequences

Recap: Convergence of LSR for bounded Y with speed

C (λ)B4VF
(1 + log L + log |I1|)

|I1|
+ 8B2(λ+ 1)

L∑
k=1

∑
j∈Ik

β(k , j).

Exercise: Assume the (sub)exponential mixing condition

β(σ((Xj ′ ,Yj ′)j ′≤j), σ((Xj+k ,Yj+k))) ≤ ae−ck , (a, c) ∈ [0,∞)× (0,∞)
(12)

and consider the partition I1, . . . , IL of {1, . . . n} where

L =

⌈
(1 +

1
c

) log n
⌉
, Ik := {jL + k}m−1

j=0

for 0 ≤ k < L (adjust the necessary details) to prove the following:
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L =

⌈
(1 +

1
c

) log n
⌉
, Ik := {jL + k}m−1

j=0

for 0 ≤ k < L (adjust the necessary details) to prove the following:
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The non I.i.d Case: convergence of Averages
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The non I.i.d Case: convergence of Averages

Theorem (Rate of convergence of LSR for Exponential Mixing Sequences)

Under (12) (and the rest of our working hypotheses):

E

∫
|f̂ ∗I[f̂ ∗≤B](x)− y |2dµn(x , y) ≤ C (λ)B4VF (1 +

1
c

)2 log n×

(
(1 + log n)

n
+ a(1 +

log n
n

)n−c) + λ inf
f ∈F

∫
|f (x)− y |2dµn(x , y).

for n ≥ 2 such that en ≥ n1+ 1
c .
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The non I.i.d Case: convergence of Averages

First Conclusion (convergence of Averages)

Under mixing conditions (exponential, polynomial) on the data sequence
(Xk ,Yk)k , and for the LSR estimator f̂ ∗ (constructed from
Dn = (Xk ,Yk)nk=1), one has the convergence (if F is a VC class and
||Yk ||P,∞ ≤ B)

lim
n→∞

(
E

∫
|f̂ ∗(x)− y |2dµn(x , y)− inf

f ∈F

∫
|f (x)− y |2dµn(x , y)

)
= 0.

(13)
with an explicit rate (depending on λ > 1) in the bounded case for an
error less than

(λ− 1) inf
f ∈F

1
n

n∑
k=0

E |f ◦ Xk − Yk |2.
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The non i.i.d. case: convergence in Distribution

Part III

Convergence in Distribution of Least-Squares Regression
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The non i.i.d. case: convergence in Distribution

An Interpretation of the Previous Results

For (not necessarily i.i.d.) mixing data Dn := {(Xk ,Yk)}nk=1 with uniformly
bounded response (||Yk ||P,∞ ≤ B), the LSR

f̂n,B = f̂ ∗(TBF ,Dn)

is a L2−universally consistent estimator of the best L2 approximation
of Y as a function of X taken from TBF :

f̂n,B ≈ f ∗(TBF ,Dn) ∈ arg min
f ∈TBF

1
n

n∑
k=1

E |f ◦ Xk − Yk |2 =

arg min
f ∈TBF

∫
Rd×R

|f (x)− y |2 dµn(x , y). (14)

Note: if (Xk ,Yk) ∼ (X ,Y ) (thus µn = µ∞), the r.h.s of (14) reduces to

arg min
f ∈TBF

E [|f ◦ X − Y |2].
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The non i.i.d. case: convergence in Distribution

Questions on Convergence

(When) is there a limit, as n→∞, to

inf
TBF

∫
Rd×R

|f (x)− y |2dµn(x , y) ?

If such limit exists, is there a speed of convergence?
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The non i.i.d. case: convergence in Distribution

Asymptotic Consistency of LSR

We have seen: under mixing conditions

0 = lim
n

(E

∫
|f̂n,B(x)− y |2 dµn(x , y)− inf

f ∈TBF

∫
|f (x)− y |2dµn(x , y)).

Let µ be a measure. Assuming the “diagonal” convergence

0 = lim
n

(E

∫
|f̂n,B(x)− y |2 dµn(x , y)−E

∫
|f̂n,B(x)− y |2 dµ(x , y)), (15)

we get 0 = limn(E [
∫
|f̂n,B(x)− y |2 dµ]− inff ∈TBF

∫
|f (x)− y |2dµn(x , y)).

If in addition “limn infTBF = inff ∈TBF limn” we arrive at

lim
n

E [

∫
|f̂n,B(x)− y |2 dµ(x , y)] = inf

f ∈TBF

∫
|f (x)− y |2dµ(x , y). (16)
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The non i.i.d. case: convergence in Distribution

Theorem (Convergence in Distribution of LSR)

Assume that (Xk ,Yk)k , f̂n,B is as above ((Xk ,Yk) β−mixing,
||Yk ||P,∞ ≤ B , etc.) and let

µn :=
1
n

n∑
k=1

µ(Xk ,Yk )

be the average measure at time n. If µn converges to µ in total
variation distance, then

lim
n

E

∫
|f̂n,B(x)− y |2dµ(x , y) = inf

f ∈TBF

∫
|f (x)− y |2dµ(x , y).

Proof: Convergence in TVD implies

lim
n

sup
f ∈TBF

|
∫
|f (x)− y |2dµn(x , y)−

∫
|f (x)− y |2dµ(x , y)| = 0.

This implies the exchange of “lim” and “inf”.
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The non i.i.d. case: convergence in Distribution

Speed of Convergence

Speed of convergence can be obtained assuming control on ||µn − µ||TV .

Example: A Markov Kernel Q satisfies the Doeblin condition if there
exists (δ,m) ∈ (0, 1)× N∗ such that

LQm := sup
x1 6=x2

||Qm(x1, ·)− Qm(x2, ·)||TV < δ.

Under the Doeblin condition, there exists a unique probability measure π
with Qπ = π and for every probability measure π′

||π′Qn − π||
TV
≤ ||π′ − π||TV δbn/mc.
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The non i.i.d. case: convergence in Distribution

Theorem (LSR under the Doeblin Condition)

Assume that (Xk ,Yk)k is an homogeneous (perhaps non-stationary)
Markov chain satisfying the Doeblin Condition. Then if π is the unique
stationary distribution of (Xk ,Yk)k , there exists (a, c) ∈ [0,∞)× (0,∞)
such that for all λ > 1

E

∫
|f̂n,B(x)− y |2 dπ(x , y) ≤

C (λ)B4VF (1 +
1
c

)2 log n × (
(1 + log n)

n
+ a(1 +

log n
n

)n−c)+

λ inf
f ∈TBF

∫
|f (x)− y |2d π(x , y).
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The non i.i.d. case: convergence in Distribution

Thank you!
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The non i.i.d. case: convergence in Distribution
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