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INTRODUCTION



What are complex systems?

# Large number of agents

interacting locally

# Complex emergent,

self-organized behavior

# decentralized dynamics

architect



Ant colony system

# The colony as a whole can work together cooperatively to

accomplish very complex tasks.

# No central control

# They organize themselves to produce structures much

more complicated than any single ant could produce



The brain

# 100 billion neurons and 100 trillion connections between

those neurons.

# Somehow the huge ensemble of neurons and connections

gives rise to the complex behaviors we call “cognition” or

“intelligence” or even “creativity”.



Immune system

# They communicate with one another through chemical

signals, and work together, without any central control, to

launch coordinated attacks on what they perceive as

threats to the body.

# They are able to change, or adapt itself, in response to what

that population of cells perceives in its environment



Cities

# It has often been said a city is like a living organism in

many ways

# To what extent do cities actually resemble living

organisms, in the ways they are structured, grow, scale

with size, and operate?



Properties

Emergence

# The system has properties that the elements do not have

# These properties can not be easily inferred or deduced

# Different properties can emerge from the same elements

Self-organization

# “Order” of the system increases without external

intervention

# Originates purely from interactions among the agents



Properties

Nonlinear interactions

# The components of the system interact in such a way that

the overall behavior can not be expressed as the sum of the

individual parts.

Information processing

# The system as hole gets information from the environment

about its current state

# It uses this information to take decisions.



Properties

Evolution, adaptation and learning

# Systems improve by themselves in order to survive or have

a better performance in its environment.

Decentralization

# The "invisible hand": order without a leader

# Distribution: each agent carry a small piece of the global

information

# Ignorance: agents don’t have explicit group-level

knowledge/goals



A vast archipielago



ANT COLONY SYSTEM



Motivation

# Study self-organization

◦ Modeled −→ Agent base modeling (ABM)

◦ Theoretical framework −→ Nonequilibrium

thermodynamics

Question

Is there a link between nonequlibrium thermodynamics and

(AMB)?



System to study

# Ant colony food foraging

# Exhibit self-organization

# Can be modeled using

ABM

The agents (the ants) −→ Decisions −→ Simple rules

Rules −→ gradient-following and pheromone dropping

⇓

Construct the shortest paths to food sources



Borrowing nonequilibrium thermodynamics ideas

1. Constraints can be constructed from entropy-producing

processes in the bootstrapping phase of self-organizing

systems.

2. Positive feedback loops are critical in the structure

formation phase.

3. Constraints tend to decay. The continued presence of

far-from-equilibrium boundary conditions are required to

reinforce constraints in the maintenance phase.

CONSTRAINT

What is a constraint in the ant colony system?



As a system self-organizes, components of the system are

expected to lose degrees of freedom.

↓

In the ant colony system, ants lose directional degrees of

freedom as they are informed by a gradient. This is called a

constraint.

↓

Quantities that measure ignorance and order

Entropy

S � −

W∑
i�1

pi log pi . (1)



Model

# A nest and some amount of food are placed in the space

# A fixed number of ants is initially placed at the nest

↓

Initial configuration Evolution



# At each time step some percentage of the pheromone

present at each position evaporates

⇓

Allows adaptation to changes in food location

# The ants have directionality. They can only travel to their

forward five positions

⇓



Borrowing ideas from Ant-Colony-Optimization (ACO)

p j �
µαj + β∑N

n−1 µ
α
n + β

(2)

α: Scaling exponent

Increases the probability to

the greatest pheromone level

β: Random base

Decrease the probability to

the greatest pheromone level

µ j

Pheromone level at position j



Directional entropy→ Total ant ignorance

Sq �

∑N
i�1 pi ln pi

ln N
, (3)

Spatial entropy

Sq �

∑M
i�1 ρi ln ρi

ln M
, (4)

where ρ is given by

ρi �
# of ants at position j

M
. (5)

M −→ Total number of positions in the space (6)



Evolution



Population Sizes

# Population sizes of nest seeking and food seeking ants.

Both populations achieve equilibrium once a path between

the nest and the source of food is created.



Different phases of evolution

Mean path length



Different phases of evolution

Order parameter: λ �
d
dt (Mean Path Length)



Measuring nonequilibrium thermodynamic properties

Entropy comparison



# Increasing spatial entropy causally constraining ant

movement is offered as an illustration of:

(1). Constraints can be constructed from entropy-producing

processes in the bootstrapping phase of self-organizing sys-

tems.

# When the food source is close to zero, the structure breaks

up as the constraints on the ants movements (the

pheromone field) gradually decay. This is an illustration of:

(3). Constraints tend to decay. The continued presence of

far-from-equilibrium boundary conditions are required to re-

inforce constraints in the maintenance phase



IRREVERSIBLE SYTEMS: HEAT FLUX
IN A NONLINEAR CHAIN



Motivation

Irreversibility paradox

All the fundamental differential equations of physics —

Einsten’s, Hamiltons’s, Lagrange’s, Maxwell’s, Newton’s,

Shrödinger— are "time reversible"

⇓

Thermodynamics and every day life are not.



Introduction

Time reversibility

All possible solutions of the fundamental equations can be

followed either forward or backward in time.

Computational roundoff errors accumulate.

No simple relation linking the errors in a reverse trajectory to

those of the forward trajectory

⇓

The exponential growth of these differences frustrate attempts

to reverse trajectories for more than a few collision times



Irreversible flows

# impose boundary

conditions or constraints

# Heat and work should be

incorporated into the

programing.

how this could be done ?



Thermal environment

Thermostats

A modification of the Newtonian MD scheme with the purpose

of generating a statistical ensemble at constant temperature. It

constrain the kinetic energy of selected degrees of freedom

⇓

# Match experimental conditions

# Manipulate temperatures in algorithms

# Avoid energy drifts caused by accumulation of numerical

errors



Temperature

Thermodynamics

Two bodies in thermal equilibrium with a third are also in

thermal equilibrium with each other. This macroscopic ther-

modynamic ignores fluctuations

Statistical mechanics

Temperature T is defined by the average kinetic energy of any

typical Cartesian degrees of freedom, relative to a commoving

corotating frame

T �
〈p2〉
mk



# Kinetic-theory temperature can be used both at and away

from equilibrium. At equilibrium, where entropy is a valid

concept, the maximization of entropy invariably leads to

the Maxwell–Boltzmann “Gaussian” distribution of

momenta:

P(p) �
√

β

2πm
e−β

p2

2m (7)



Molecular Dynamics Simulation

# Phase space is collection of positions q and momenta p of

particles in system

# The Hamiltonian form

dqt � OpH(qt , pt)dt (8)

dpt � −OqH(qt , pt)dt (9)

H(q , p) � Ekin + V(q), Ekin �
1

2

pT M−1p (10)



Nose-Hoover deterministic thermostat

# Based on extended Lagrangian formalism

◦ Deterministic trajectory

◦ Simulated system contains virtual variables related to real

variables

q̇ �
p
m
, (11)

ṗ � F −
ξp
τ
, (12)

˙ξ �
(〈p2〉/mkT) − 1

τ
. (13)



# Disadvantages

◦ Extended system not guaranteed to be ergodic

# Advantages

◦ Easy to implement and use

◦ Deterministic and time reversible



Nose-Hoover-Langevin Thermostat

# Controls temperature in a similar way that Nose dynamics

# Adds random noise to improve ergodicity

◦ In contrast to Langevin dynamics, where noise is added

directly to each physical degree of freedom, the new scheme

relies on an indirect coupling to a single Brownian particle.

dq
dt

� M−1p (14)

dp
dt

� −OV(q) − A(ξ)p (15)

dξ �
1

µ
(pt M−1p −

n
β
)dt −

1

2

µβσ2ξdt + σdW (16)



Fourier heat law

J � −κOT, (17)

# Is there a microscopic foundation of Fourier’s law?

# It is always valid?

# If so, under what conditions?



Description of the Model

# One-dimensional chain.

# Potential

◦ Harmonic

q̈n � qn+1 + qn−1 − 2qn

◦ Anharmonic FPU-β

q̈n � qn+1 + qn−1 − 2qn + β
[(qn+1 − qn)3 − (qn − qn−1)3

]



Chain system

q̇ �
p
m

ṗ � qn+1 + qn−1 − 2qn + β
[(qn+1 − qn)3 − (qn − qn−1)3

]

Nosee-Hoover thermostat

q̇ �
p
m

ṗ � qn+1 + qn−1 − 2qn + β
[(qn+1 − qn)3 − (qn − qn−1)3

]
−
ξn pn

τ

˙ξ �
(〈p2

n〉/mkT) − 1

τ



Discretization of the Stochastic differential equations

P � pn
−
∆t
2

OV(qn),
Q � qn

+

∆t
2

P,

P � exp(−∆tξn/2)P,

ξn+1
� ξn

+

∆t
µ

*
,

∑ P2

i

mi
−

n
β
+
-
+ σ
√

∆tW −
∆tσ2

4µ
(ξn

+ ξn+1),

P � exp(−∆tξn+1/2)P,
qn+1

� Q +

∆t
2

P,

pn+1
� P −

∆t
2

OV(qn+1).



Table: Time averages for the thermostat temperatures

Deterministic Stochastic

〈T〉t 〈T〉t

2.071738 2.060527

Deterministic thermostat Stochastic thermostat



One-dimensional chain with harmonic interaction

# Theoretical result:

T �
T+ + T−

2

(18)

Temperature profile



FPU-β chain

Temperature profile



Scaled temperature profile

dT
dx
∝

T+
− T−
N



Heat flux

# The local heat flux J(x , t) is defined by the continuity

equation, details can be found in [6]:

Ji � ẋi
∂V
∂xi

(x , xi+1) (19)

Heat flux Scaling of the Heat flux



Furier law?

κ �
J

dT/dx
(20)

# J scales to zero as N−α, with α v 0.5.

# The temperature gradient vanishes as N−1.

# The conductivity diverges as N1−α

⇓

Fourier law is not valid for a FPU-β nonlinear chain.



RELEVANCE OF COMPUTATIONAL
MODELING IN COMPLEX SYSTEM
SCIENCE



Existence of macro-equations for some dynamic systems

# We are typically interested in obtaining an explicit

description or expression of the behavior of a whole

system over time

# In the case of dynamical systems, this means solving their

evolution rules, traditionally a set of differential equations

(DEs)

Chemical kinetics

dA
dt

� −αkAαBβ

Wave equation

∂2u
∂t2

� c2∇u



Existence of macro-equations and an analytical solution

# In some cases, the explicit formulation of an exact solution

can be found by calculus, i.e., the symbolic manipulation of

expressions

HEAT EQUATION

∂u
∂t

� α
∂2u
∂x2

with u(x , 0) � δ(x) �⇒ u �
1

√
4πkt

exp

(
−x2

4kt

)

unfortunately, although vast, this family is in fact very small

compared to the immense range of dynamical behaviors that

natural complex systems can exhibit!



Existence of macro-equations but no analytical solution

# When there is no symbolic resolution of an equation,

numerical analysis involving algorithms (step-by-step

recipes) can be used

# It involves the discretization of space into cells, and time

into steps



Absence of macro-equations

# The physical world is a fundamentally nonlinear and

out-of-equilibrium process

# Focusing on linear approximations and stable points is

missing the big picture in most cases

NO EQUATIONS
Most real-world complex systems do not obey neat macro-

scopic laws
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