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Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution
function and 0 < o < 1. Then,

VaR,(X) :=inf{x e R | F(x) > a}.

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 4/44



Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution
function and 0 < o < 1. Then,

VaR,(X) :=inf{x e R | F(x) > a}.

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 4/44



Introduction

VALUE AT RISK (VaR)

Let X be a random variable representing loss, F its distribution
function and 0 < o < 1. Then,

VaR,(X) :=inf{x e R | F(x) > a}.

VaR(X)

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015



Introduction

VALUE AT RISK (VaR)

e The VaR has became in a benchmark for risk management.

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 5/44



Introduction

VALUE AT RISK (VaR)

e The VaR has became in a benchmark for risk management.

o The VaR has been criticized by Artzner et al. (1999) since it
does not encourage diversification.

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 5/44



Introduction

VALUE AT RISK (VaR)

e The VaR has became in a benchmark for risk management.
o The VaR has been criticized by Artzner et al. (1999) since it
does not encourage diversification.

e But defended by Heyde et al. (2009) for its robustness and
recently by Danielsson et al. (2013) for its tail subadditivity.
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Introduction

VALUE AT RISK (VaR)

But, what is one of the problems with this measure?

It is its extension to the multivariate setting, where

e There is not a unique definition of a multivariate quantile.
e There are a lot of assets in a portfolio. (High Dimension)
e There is dependence among them.
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Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios
X=(X,..., %),

is to consider a function f : R” — R and then:

e The VaR of the joint portfolio is the univariate-one associated
to f(X).

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 7/44



Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

An initial idea to study risk measures related to portfolios
X=(X,..., %),

is to consider a function f : R” — R and then:

e The VaR of the joint portfolio is the univariate-one associated
to /(X).
e In Burgert and Rischendorf (2006),

f(X) = zn:Xi or f(X) = max X;.
i=1

i<n

Output: A NUMBER
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Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach
of the Value at Risk,
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Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Embrechts and Puccetti (2006) introduced a multivariate approach
of the Value at Risk,

o Multivariate lower-orthant Value at Risk
VaR (X)) := 0{x € R" | Fx(x) > a}.
o Multivariate upper-orthant Value at Risk

VaR,(X) := 0{x e R" | Fx(x) < 1—a}.

Output: A SURFACE ON R”
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Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk
measure related to the measure introduced by Embrechts and Puc-
cetti (2006).
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Introduction

REVIEW ON MULTIVARIATE VALUE AT RISK

Cousin and Di Bernardino (2013) introduced a multivariate risk
measure related to the measure introduced by Embrechts and Puc-
cetti (2006).

o Multivariate lower-orthant Value at Risk
VR, (X) == E [X|Fx(x) = o] .
o Multivariate upper-orthant Value at Risk

VaR,(X) :=E[X|Fx(x) =1 —q].

Output: A POINT IN R”
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Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

o The lack of a total order in high dimensions.
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Introduction

DRAWBACKS IN THE MULTIVARIATE SETTING

e The lack of a total order in high dimensions.

e The dependence among the variables.

e There are many interesting directions to analyze the data.
@ The computation in high dimensions.
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Introduction

OBJECTIVES

Introduce a directional multivariate value at risk J
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O Give the possibility of analyzing the losses considering the
manager preferences.
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Introduction

OBJECTIVES

Introduce a directional multivariate value at risk )

@ Consider the dependence among the variables.

O Give the possibility of analyzing the losses considering the
manager preferences.

© Improve the interpretation of the risk measure.

© Provide a non-parametric estimation to compute the risk mea-
sure in high dimensions.

© Provide analytic expressions of the risk measure with copulas.

[«
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Directional MVaR

OUTLINE

© DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVAR)
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Directional MVaR

DIRECTIONAL MULTIVARIATE VALUE AT RISK (MVaR)

DIRECTIONAL MVAR

Let X be a random vector satisfying "the regularity conditions", then the
Value at Risk of X in direction u and confidence parameter « is defined

as
VakS(X) = (Qx(a,w)(u+E[X]}).,

where A\ e Rand0 < a < 1.

Output: A POINT IN R”
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Directional MVaR

Ox(a,u) = Directional Multivariate Quantile
(Laniado et al. (2012)).

DEFINITION

Given u € R”, ||u|| = 1 and a random vector X with distribution proba-
bility P, the a-quantile curve in direction u is defined as:

Ox(a,u) :=0{x e R" : P[¢}] < a},

where 9 mans the boundaryand 0 < a < 1
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Directional MVaR

¢¥ = Oriented Orthant.

Given x, u € R" and ||u|| = 1, the orthant with vertex x and direction u
is:

¢y = {z € R"|Ry(z — x) > 0},

1

where e = —~(1,...,1)" and R, is a matrix such that R,u = e.

S
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Directional MVaR

EXAMPLES OF ORIENTED ORTHANTS

':::;‘4,:“\:.. .-

0 0

(A) Orthant in directionu = (0,1)  (B) Orthant in direction u = —e

Examples of oriented orthants in R?

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 16 /44



Directional MVaR

DIRECTIONAL MULTIVARIATE QUANTILES

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CLASSICAL DIRECTIONS
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Directional MVaR

DIRECTIONAL MULTIVARIATE QUANTILES

ued={(1,0),(0,1),(~1,0),(0,~1)}

(A) Bivariate Uniform (B) Bivariate Exponential (C) Bivariate Normal

CANONICAL DIRECTIONS
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(A) Bivariate Uniform (C) Bivariate Exponential (B) Bivariate Normal

VaR 5(X)

[«
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(A) Bivariate Uniform (C) Bivariate Exponential (B) Bivariate Normal

VaR§ 5(X)
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Directional MVaR Properties

MVAR PROPERTIES

@ Non-Negative Loading: If A > 0,

E[X] <, VaR2(X),

where the order is given by

PREORDER (LANIADO ET AL. (2010))

x is said to be less than y if:

X=yy = D¢

Rux < Ryy.
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Directional MVaR Properties

MVAR PROPERTIES

@ Quasi-Odd Measure: VaR? (—X) = —VaR_"(X). J

e Positive Homogeneity and Translation Invariance: Given ¢ €
R*™ and b € R”, then

VaRY (X + b) = cVaRy(X) + b.
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Directional MVaR Properties

MVAR PROPERTIES

o Orthogonal Quasi-Invariance: Let w and Q be an unit vector and
a particular orthogonal matrix obtained by a QR decomposition
such that Qu = w. Then,

VaR" (0X) = QVaR" (X).
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Directional MVaR Properties

MVAR PROPERTIES

@ Consistency: Let X and Y be random vectors such that E[Y] =
cu+ E[X], forc >0and X <g, Y. Then:

VaR" (X) <y VaR(Y),

where the stochastic order is defined by

STOCHASTIC EXTREMALITY ORDER (LANIADO ET AL. (2012))

Let X and Y be two random vectors in R”,

X<gY = PR(X-2)>0 <P[R(Y—12) >0 Px [¢7] < Py [¢7],

for all z in R”.

[«
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Directional MVaR Properties

MVAR PROPERTIES

o Non-Excessive Loading: For all « € (0,1) and u € B(0),

VaR% (X) =<y R, sup {RyX(w)}.
weN

e Subadditivity in the Tail Region: Let X and Y be random vectors,
with the same mean p and let (R,X,R,Y) be a regularly varying
random vector. Then,

VaR" (X +Y) <y VaR"(X) + VaR"(Y).
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Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Let X be a random vector and u a direction. Then for all 0 < o < 1,

VaR® (X) =y VaR"® (X).
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Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Then, analogously as Embrechts and Puccetti (2006) and Cousin
and Di Bernardino (2013), we can define:

Lower Multivariate VaR in the direction u as
VaR%(X),
Upper Multivariate VaR in the direction u as

VaR" (X).

[«
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Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Lower Multivariate VaR = VaR{ 5(X) and
Upper Multivariate VaR = VaR 5(X)
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Directional MVaR

LOWER AND UPPER VERSIONS OF DIRECTIONAL MVaR

Q2
Lower Multivariate VaR = VaR(()ﬁ’ﬁ)( X) and
1

77

1

T (X)

e

Upper Multivariate VaR = VaR §
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Marginal VaR vs. MVaR

OUTLINE

© MARGINAL VAR vs. MVAR
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Marginal VaR vs. MVaR

RELATION BETWEEN THE MARGINAL VaR AND THE
MVaR

RESULT

Let X be a random vector with survival function F quasi-concave. Then,
forall o € (0, 1):

VaR—_(X;) > [VaR%,(X)];, forall i=1,..,n

Moreover, if its distribution function F is quasi-concave, then, for all o €
(0,1),

[VaR €, (X)], > VaR,_4(X), forall i=1,..,n.

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 26/44



Marginal VaR vs. MVaR

RELATION BETWEEN THE MARGINAL VaR AND THE
MVaR

RESULT

Let X be a random vector and u a direction. If the survival function of
RyX is quasi-concave. Then, forall 0 < o < 1,

VaR)_o([RuX])) > [RyVaR%(X)],,  forall i=1,..,n.

And if RyX has a quasi-concavity cumulative distribution, we have that

[RuVaRl_fa(X)]i > VaR,_o([RuX]:), forall i=1,..,n.

[«
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© CoruLASs AND VaR" (X)

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 27/44



Copulas and VaRY, (X)

BIVARIATE COPULAS

@ INR? = u = (cos ¥, sinh).
o Let X be a bivariate vector with density given by a copula density

¢(+,-). Then, the first component of VaR" (X) can be obtained by
solving the equation on the domain,

// c(s, t)dtds = «,
Dy (x1)

where Dy (x1) = €, . N[0, 1]* and

X1 sin(@)—%(sin(Q)—cos(@) .
lg(xl) = { cos(0) ) if 005(9) 75 0 and X1 € [()7 1]7

L if  cos(d) =0andx, €[0,1].

Torres Diaz, Raul A. Multivariate VaR: Directional perspective August 2015 28/44



- Example of Dy(x;) for 6 € (%, %)
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Copulas and VaRY, (X)

BIVARIATE COPULAS

Results of VaRY (X) with the Frank’s copula, for different values on the
dependence parameter :

_—

— = -10
B3
p1

— (3 3

— (3= 10

0 01 02 03 04 05 06 07 08 0 0.2 04 0.6 08
a - level a - level

a) Directionu = —e b) Direction u = _3\5_5[%7 2y
Behavior of the first component of VaRY,(X)

[«
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Copulas and VaRY, (X)

n-DIMENSIONAL ARCHIMEDEAN COPULAS

Let X be a n-dimensional random vector with [0, 1]-uniform marginals.

e If X has an Archimedean copula distribution generated by ¢(-),
then:

v, (0], = o~ (

e If X has a survival copula given by an Archimedean copula
generated by ¢(-), then:

Lo gte)),

n

[VaRS,(X)); = 1 — ¢! (M> |
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n-DIMENSIONAL ARCHIMEDEAN COPULAS

Then, we compare VaR.¢(X) (Our) with VaR_ (X) (Cousin and Di
Bernardino (2013)) and VaRr¢ (1 —X) with VaR,(1 —X), using the
Clayton’s family of copulas.

e
VaR? (X)

VaR®

— Bt

a-level

a) Lower Case

(1-X)

1o

 Bte= -1
—Bta= )

Beta=1

Beta=8

— B o

0 02 04 06 08 1
o - level

b) Upper Case

- Dashed line = Cousin and Di Bernardino. Solid line = VaRY (X)
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Non-Parametric Estimation

OUTLINE

© NON-PARAMETRIC ESTIMATION
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Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Given the sample X, := {xq, -+ ,xm} Of the random loss X, the direction
u and the value of a. We find the directional quantile curve as:

me(a,u) = {Xi : Py, [(’:;'i] = a} ,
where

Px, [¢ Z 1iyees }-
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Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

However, it is possible that Ox, (o, u) = (. This can be solved allowing
a slack #:

Ok, (a,u) == {x;: |Px, €] —al <n}.
where Ox, (o, u) C Q% (a,u), for all A,

Once the directional a-quantile curve is obtained, we cross it with the
line {ux, + Au} where
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Non-Parametric Estimation

NON-PARAMETRIC ESTIMATION

Input: u, o, & and the multivariate sample X,,.
fori=1tom
P; =Px, [€4],
If |Pl‘ — Of| < h
X; € Q}im(a,u),
end
for x; € Q% (o, u)
dj = dist(x;, {prx,, + Mu}),
end
end
VaR® (X)) = {Xk|dx = min{d,}}.
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Non-Parametric Estimation

EXECUTION TIME

Time in Seconds

Dim\ Size | 1000 | 5000 | 10000 | 50000
5 2 49 199 4903
10 2 53 208 5191
50 4 82 325 7656
100 6 139 561 | 12487

In an Intel core i7 (3,4 GH) computer with 32 Gb RAM.
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OUTLINE

© ROBUSTNESS
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ROBUSTNESS

We analyze the behavior of the MVaR when a sample is contami-
nated with different types of outliers.

We use as a benchmark the measurement given by the multivariate
VaR in Cousin and Di Bernardino (2013).

[«
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ROBUSTNESS

We simulate 5000 observations of the following random vector:

xv 4 X; with probability p = 1 — w,
~ |X, with probability p = w,

where X; £ Ny (11, %1), Xo 2 Ny(py + A, S + Ag)and 0 < w < 1.
Specifically:

03 05

y = [50,50], 21:<O'5 O'3>.

1. Varying only the mean.
Contaminating ¢ 2. Varying only the variances.

- 3. Varying all the parameters.
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ROBUSTNESS

To evaluate the impact of the contamination, we use:

PV — ||Measure(X*) — Measure(X°)||»
N ||Measure(X0)||, ’

where Measure(X°) is the sample with w = 0% and Measure(X*) is
the sample with level of contamination w%, (w = 1% — 10%).

[«
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ROBUSTNESS

1. Varying only the mean, A, #0, Asx =0.
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ROBUSTNESS

2. Varying only the variances, A, =0, Ax = [465 605}

0.045,
u Ve’ () _
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ROBUSTNESS

3. Varying all the parameters, A, #0, Ax = [

x10°
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Conclusions

CONCLUSIONS

o We introduce a directional multivariate value at risk and a non-
parametric estimation for this risk measure.

e The directional approach allows to consider external informa-
tion or management preferences in the analysis of the data.

o We provide good properties for this risk measure, including
the tail subadditivity property.

e We obtain analytic expressions with copulas.
e The simulation study of robustness shows good behavior of

the measure.
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